修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

Non‐invasive on‐site Raman study of polychrome and white enamelled glass artefacts in imitation of porcelain assigned to Bernard Perrot and his followers

DOI:10.1002/jrs.5745 期刊:Journal of Raman Spectroscopy 出版年份:2019 更新时间:2025-09-11 14:15:04
摘要: Bernard Perrot produced sophisticated glass objects from ~1666–1709 in Orléans, particularly white enamelled artefacts and ruby glass. We present here the first non‐invasive Raman study of 16 polychrome and white enamelled glass artefacts that are assigned to Bernard Perrot or his followers. These glasses belong to the museum collections at Orléans and Sèvres in France. The prominent characteristic of these artefacts is their white bodies that were produced in imitation of porcelain. The small thickness of enamel applied to these glasses imposes the use of a high magnification (×200) long working distance microscope objective for Raman analysis. Pigments and opacifiers were identified, and the production technology was discussed. White opacification was found to be obtained by three compounds: calcium phosphate (bone opacification) for blown utensils, calcium antimonate for figurines, and cassiterite for thin enamels. The use of characteristic arsenic‐rich European cobalt was identified in the blue enamels with the characteristic Raman signature of lead arsenate apatite as observed for the 17th and 18th century French soft‐paste porcelains and Limoges enamels. The easy Raman detection of arsenic‐rich phases also allows on‐site identification of ruby glasses produced according to Perrot's technique (formation of Au° colloids by reaction initiated with an arsenic salt). The amount and crystallinity of calcium phosphate being variable appears to be a potential tool to discriminate between different production periods or workshops.
作者: Philippe Colomban,Burcu K?rm?z?
AI智能分析
纠错
研究概述 实验方案 设备清单

Investigating the therapeutic effects of a specific herbal medicine on a particular disease.

The present study confirms that on‐site Raman analysis is an efficient non‐invasive technique for the characterisation of enamelled glass artefacts, thanks to the use of a high magnification microscope objective to avoid the contribution of the substrate. In particular, the fluorescence caused by the glass body can mask the signature of the thin enamels applied, being the case for the artefacts analysed where the thickness of the enamels is much smaller than that of the pottery glazes. Islamic artefacts such as Mamluk enamelled glass are examples of thick enamels where the enamel layer can be hundreds of microns thick. As a non‐invasive method, on‐site Raman analysis competes very well with ion beam techniques that are not mobile and much more expensive. The high spatial resolution of Raman microspectroscopy is also a great advantage when compared to portable X‐ray fluorescence that is commonly used for the non‐invasive characterisation of ancient glassy artefacts. The information related to the composition type of glass and enamels that can also be inferred from the Raman spectra contributes to the understanding of the production technology of the artefacts. Application of this method to figurines that are expected to have been produced in different workshops (Orléans, Nevers, Venice, etc.) may offer new information on these poorly studied artefacts. Furthermore, on‐site Raman analysis, capable of identifying crystalline and amorphous phases, is also able to identify the small amount of the arsenate that was formed as a result of Perrot's recipe for the preparation of the ruby glass as well as the use of arsenic‐rich cobalt ore with European origin for the blue glasses. Finally, it can be suggested that the figurines of Perrot's workshop were opacified with Ca2Sb2O7 whereas the artefacts assigned to his followers such as the beaker 999.4.1, pot MNC 11226, and Baluster vase MNC 2011.0125 utilised the bone calcination route [Ca3(PO4)2 opacifier].

The technical and application constraints of the experiments, as well as potential areas for optimization.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕?,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“Non‐invasive on‐site Raman study of polychrome and white enamelled glass artefacts in imitation of porcelain assigned to Bernard Perrot and his followers”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期