修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

Unveiling Complex Plasmonic Resonances in Archimedean Nanospirals through Cathodoluminescence in a Scanning Transmission Electron Microscope

DOI:10.1017/s143192761600218x 期刊:Microscopy and Microanalysis 出版年份:2016 更新时间:2025-09-23 15:19:57
摘要: Metallic nanostructures with a complex plasmonic response, such as the Archimedean nanospiral (ANS) present novel ways to utilize plasmonics in modern technology [1,2]. The nanospiral can support several resonant modes, with distinct electric field profiles as shown by finite-difference time-domain (FDTD) simulations such as the hourglass (500-650nm) and focusing (650-980nm) modes [2]. In addition to the linear plasmonic response, the ANS exhibits a stronger second-order nonlinearity than seen in other metallic nanostructured systems. A high spatial-resolution picture of the plasmonic modes is critical to understanding the interactions between plasmonic modes that drive the high non-linear efficiencies [3]. Purely optical experiments struggle to observe the near field behavior of the structure due to being diffraction limited. However cathodoluminescence (CL) experiments in a scanning transmission electron microscope (STEM) create a unique opportunity for characterizing plasmonic systems with both the spatial sensitivity of electron optics and the spectral sensitivity of photonics. A significant benefit to the use of STEM-CL, as opposed to other high-resolution spectroscopy techniques such as electron energy loss spectroscopy (EELS), is that the photons generated from radiative decays in the sample are collected for signal instead of the electrons from the probe. As a result, the signal can be manipulated and filtered using standard optical techniques, allowing us to map difficult to observe plasmon modes and even give insight into the polarization of their radiative decay. To experimentally observe the plasmon modes, an Au ANS array is fabricated using electron-beam lithography on a 50 nm silicon nitride film supported by a silicon substrate. A 500μm x500 μm window is then backside-etched beneath the array. STEM-CL is done in a VG-HB601 STEM operated at 60 kV with a home-built CL spectrometer system. Radiative emission is collected with a parabolic mirror and reflected out of a port in the side of the microscope, allowing the signal to be filtered and polarized using standard optical equipment, and ultimately collected in a photomultiplier tube (PMT). First, the focusing mode (650-980nm) is examined. Fig 1a shows a FDTD simulation of the plasmon mode. Fig 1b shows a high angle annular dark field (HAADF) image of the fabricated ANS on the SiN window. The raw CL intensity is shown in Fig 1c with no spectral filtering. Emission from all plasmonic modes, interband transitions, and any other radiative decay pathways are all simultaneously detected. However, by spectrally filtering the CL signal, individual modes can be isolated. The focusing mode is predicted to be strongest in the 650-980 nm region, so by using a 600 nm long-pass spectral filter, the radiative decay from other optical features can be eliminated, and a map of the focusing mode (Figure 1d) can be obtained. For the hourglass mode, however, spectral filters cannot be used to observe the spatial profile of the plasmonic resonance, because unlike the focusing mode, the hourglass mode has a distinct polarization axis that is parallel to the axis of the exciting optical pulse, as shown in the FDTD simulation in Fig 1e. With no polarization selectivity on electron-optics, the hourglass plasmon modes can be excited in all in-plane axes of the ANS simultaneously within the STEM, and no individual plasmon can be isolated and detected. However, since the hourglass mode has a strong polarization dependence on the exciting pulse, it is likely that the resulting emission is similarly polarized. In Fig 1f the HAADF image of an ANS is shown, and Fig 1g shows the unfiltered CL image. Fig 1h shows CL image filtered with a linear polarizer and exhibits a similar spatial profile to the simulation in Fig 1e, demonstrating that the modes that have a have a strong dependence on the polarization of the exciting optical source also exhibit a polarization dependence on their radiative decay. Nanostructures with complex, nonlinear plasmonic responses, such as the ANS, have unique optical attributes not present in simpler geometries. As a result, high spatial-resolution techniques to investigate the near-field profiles are an important avenue of plasmonic investigation. STEM-CL presents a particularly unique opportunity to combine photon and electron optics in order to characterize and map plasmonic modes, such as the hourglass and focusing modes of the ANS, with nanoscale precision.
作者: Jordan A. Hachtel,Roderick B Davidson II,Matthew F. Chisholm,Benjamin J. Lawrie,Richard F. Haglund Jr.,Sokrates T. Pantelides
AI智能分析
纠错
研究概述 实验方案 设备清单

Investigating the complex plasmonic resonances in Archimedean nanospirals (ANS) using cathodoluminescence in a scanning transmission electron microscope (STEM) to understand their unique optical attributes and nonlinear responses.

STEM-CL provides a unique method to characterize and map plasmonic modes in nanostructures like ANS with nanoscale precision, revealing their complex, nonlinear responses and polarization dependencies. This approach opens new avenues for plasmonic investigation and understanding of nanostructures' optical attributes.

The study is limited by the inability to isolate and detect individual plasmon modes with spectral filters for modes like the hourglass mode due to their polarization dependence. Additionally, the technique requires sophisticated equipment and sample preparation.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕?,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“Unveiling Complex Plasmonic Resonances in Archimedean Nanospirals through Cathodoluminescence in a Scanning Transmission Electron Microscope”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期