Editorial: Window Electrodes for Emerging Thin Film Photovoltaics
DOI:10.3389/fmats.2020.00072
期刊:Frontiers in Materials
出版年份:2020
更新时间:2025-09-23 15:21:01
摘要:
Photovoltaics (PVs) fabricated by printing at low temperature onto ?exible substrates are attractive for a broad range of applications in buildings and transportation, where ?exibility, color-tuneability, and light-weight are essential requirements. Two emerging PV technologies on the cusp of commercialization are organic PVs and perovskite PVs. CIGS, CdTe, and a-Si solar cells also have potential applications in ?exible PVs. It is widely recognized that these classes of PV will only ful?ll their full cost advantage and functional advantages over conventional thin ?lm PVs if a suitable transparent, ?exible electrode is forthcoming (Lu et al., 2018). Indium tin oxide (ITO) is the most popular transparent conductor material for opto-electronics including solar cells and displays. However, the fragile ceramic nature makes ITO unsuitable for future electronics such as ?exible, stretchable, and wearable electronics because it will easily develop cracks under mechanical deformation. Instead, optically thin ?lm or metallic nanowire networks (Sannicolo et al., 2016) of the most electrically conductive metals copper (Cu), silver (Ag), and gold (Au) have shown promising potential, in spite of the oxidation and parasitic absorption problem of Cu and the high material cost problem of Ag and Au. Whilst the chemical, thermal, and electrical stability of transparent electrodes based on these metals presents challenges, it has been shown that thin coating layers can be very e?cient in preserving their integrity and properties (Celle et al., 2018). Additionally, low-temperature, high-throughput deposition techniques, such as spatial atomic layer deposition (SALD) (Mu?oz-Rojas and MacManus-Driscoll, 2014; Khan et al., 2018), can be used to deposit these protective layers.
作者:
Ross A. Hatton,David Mu?oz-Rojas,Seung Hwan Ko,L. Jay Guo