研究目的
To estimate the increased cognitive load on the driver with a four-channel near-infrared spectroscopy (NIRS) device by introducing a machine-learning method for hemodynamic data.
研究成果
Our study suggested that it is possible to use NIRS data to classify levels of driver mental workload, even in a naturalistic situation. Furthermore, a simple combination of forehead channels was shown to provide acceptably high accuracies of classification. While the fNIRS sensors employed in this study required contact with the participants’ skin, the lightweight ball cap configuration was much less intrusive than more traditional electrophysiological measures used in related work. We also confirmed the potential of using machine learning (channel- and subject-independent) to predict possible driver cognitive distraction, a critical factor in road safety.
研究不足
The relatively small sample size used in this study (a total of 5 subjects including one female and four males) could be considered a limitation. While we believe that the NIRS signals were found to be predictive for this small sample under our specific set of conditions, it would be worthwhile to repeat the experiment with a larger sample and a wider range of conditions (e.g., driving track, time of day, gender balance, driver skill level, age, etc.).