Efficient and Long-lived Room Temperature Organic Phosphorescence: Theoretical Descriptors for Molecular Designs
DOI:10.1021/jacs.8b11224
期刊:Journal of the American Chemical Society
出版年份:2018
更新时间:2025-09-04 15:30:14
摘要:
Room-temperature phosphorescence (RTP) with long afterglow from pure organic materials has attracted great attentions for their potential applications in biological imaging, digital encryption and optoelectronic device and so on. Organic materials have been long considered to be non-phosphorescence owing to the weak molecular spin-orbit coupling and highly sensitive to temperature. However, recently, some purely organic compounds can demonstrate highly efficient RTP with long afterglow upon aggregation while others fail. Namely, it remains a challenge to expound the underline mechanisms. In this study, we present the molecular descriptors to character the phosphorescence efficiency and lifetime. For prototypical RTP system consists of carbonyl group and π-conjugated segments, the excited states can be regarded as admixture of n→π* (with portion α) and π→π* (portion β). Starting from phosphorescent process and El-Sayed rule, we deduced that (i) the intersystem crossing (ISC) rate of S1→Tn is mostly governed by the modification of the product of α and β, and (ii) the ISC rate of T1→S0 is determined by the β value of T1. Thus, the descriptors (γ=α×β, β) can be employed to describe the RTP character of organic molecules. From hybrid quantum mechanics and molecular mechanics (QM/MM) calculations, we illustrated the relationships amongst the descriptors (γ, β), phosphorescent efficiency and lifetime, as well as spin-orbit coupling constants. We stressed that the large γ and β values are favorable to the strong and long-lived RTP in organic materials. Experiments have reported confirmations of these molecular design rules.
作者:
Huili Ma,Qian Peng,Zhongfu An,Wei Huang,Zhigang Shuai