修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

Carbon Nanomaterials for Bioimaging, Bioanalysis, and Therapy || Functionalized Carbon Nanomaterials for Drug Delivery

DOI:10.1002/9781119373476.ch10 出版年份:2019 更新时间:2025-09-23 15:22:29
摘要: Chemical functionalization of nanomaterials is important to control their physical properties. Since their applications frequently require the homogeneity in the physical properties of the components, many precise functionalization methods for nanomaterials have been developed in view of their applications from electronics and optics to biomedicine. Nanomedicine has been attracting growing interest in terms of therapy and diagnosis, or so called theranostics. In the field, nanomaterials play a key role and hence they are chemically functionalized frequently to meet the requirements for the purpose. In the nanomaterial‐based drug delivery system (DDS), for example, the following functions are required: the nanodrug has to disperse well in the blood to avoid embolism; circulate throughout the body to avoid leaking from the pores in the blood vessel and trapping in the reticuloendothelial system; accumulate in the targeting organ or tissue; and finally, release the loaded drug. Among the nanomaterials in the DDS, carbon nanomaterials have the following characteristic properties: (i) basically inert, but functionizable at the functional groups such as carboxylic and hydroxyl ones on the surface, edge, and defect through organic transformation; (ii) variety of options in terms of shapes including zero‐dimensional (0D, fullerenes), one‐dimensional (1D, carbon nanotubes, CNTs), two‐dimensional (2D, graphene, G), and three‐dimensional (3D, nanodiamond, ND); (iii) commercially available; and (iv) fluorescence emission from semiconducting SWNTs, relatively small size graphenes and color center in ND. The carbon nanomaterials discussed in this chapter are graphene (Section 10.2) and ND (Sections 10.3 and 10.4). Graphene has a flat and hydrophobic surface consisting of sp2 carbons. It exhibits high affinity to the flat molecules, including π‐electrons such as triphenylene, as we reported quite recently. Therefore, it has been utilized as carrier for anti‐cancer drugs with flat and hydrophobic properties. In addition, it can work as photosensitizer in photothermal therapy, making it more fascinating as a bifunctional material in cancer therapy. However, the graphene‐based carriers that have been used so far are graphene oxide (GO), because the carrier is required to have sufficient dispersibility in a physiological environment. The direct use of pristine graphene as a drug carrier, which will be described below, is the first example, as far as we know. On the other hand, ND has been reported to be low toxicity or even nontoxic nanomaterial. It is composed of the curved surface and core, not the flat surface and edge for graphene. As in the case of edge and defect in graphene, the ND surface is covered with various functional groups such as carboxylic and hydroxyl groups. Although ND is categorized as an inorganic nanomaterial due to its robustness and chemical stability, the surface functionalities impart the organic characteristics to ND, enabling the control of the physical property by controlling the surface functionality. Recently, surface chemical functionalization of ND has been actively investigated in view of its applications. In this chapter (Sections 10.3 and 10.4), chemical functionalization on ND for drug carrier will be described; the requisite functions of aqueous dispersibility, targeting specificity, and cytotoxicity are imparted to ND through stepwise surface chemical functionalization. This chapter covers synthesis, characterization, and evaluation of the following three nanodrugs: chlorin e6 (Ce6)‐loaded graphene for cancer phototherapy; Pt drug‐loaded nanodiamond for cancer chemotherapy; and DNA‐loaded nanodiamond for gene therapy.
作者: Naoki Komatsu
AI智能分析
纠错
研究概述 实验方案 设备清单

To develop and evaluate functionalized carbon nanomaterials, specifically graphene and nanodiamond, for use in drug delivery systems for cancer therapy, including phototherapy, chemotherapy, and gene therapy.

Functionalized carbon nanomaterials, specifically graphene and nanodiamond, show promise as effective drug carriers for cancer therapy. The graphene-Ce6 composite exhibits high drug loading capacity and efficient phototherapeutic effects, while polyglycerol-functionalized nanodiamond conjugated with platinum drugs or DNA demonstrates targeted cytotoxicity and gene delivery capabilities. Further in vivo studies are needed to optimize and validate these nanodrugs for clinical applications.

The study is limited to in vitro evaluations; in vivo applications are not covered. The dispersibility of some functionalized nanodiamonds decreases after conjugation, potentially affecting stability. The mechanisms of drug release and cellular uptake require further investigation for optimization.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能模块化扫描电子显微镜,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“Carbon Nanomaterials for Bioimaging, Bioanalysis, and Therapy || Functionalized Carbon Nanomaterials for Drug Delivery”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期