- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
非线性光纤光学 || 群速度色散
摘要: 前一章阐述了如何通过求解脉冲传输方程来研究群速度色散(GVD)与自相位调制(SPM)对光纤中传播光脉冲的联合效应。在探讨一般情况前,单独研究GVD效应具有指导意义。本章将光纤视为线性光学介质来处理脉冲传输问题。第3.1节通过引入与GVD和SPM相关的两个特征长度尺度,讨论了GVD效应主导非线性效应的条件。第3.2节针对高斯脉冲和sech脉冲等特定脉冲形状,研究了色散导致的光脉冲展宽现象,并分析了初始频率啁啾的影响。第3.3节专门论述三阶色散对脉冲展宽的作用,同时给出了可预测任意形状脉冲色散展宽的解析理论。第3.4节探讨了GVD如何限制光通信系统性能,以及如何运用色散管理技术来克服此类限制。
关键词: 色散管理、色散诱导展宽、sech脉冲、群速度色散(GVD)、光脉冲、三阶色散、自相位调制(SPM)、高斯脉冲、光纤传输、频率啁啾
更新于2025-09-12 10:27:22
-
非线性光纤光学 || 自相位调制
摘要: 我们首先关注的非线性效应是自相位调制(SPM),这是一种导致光脉冲频谱展宽的现象[1-9]。SPM是连续波束在n2>0的任何非线性介质中发生自聚焦的时间类比。该现象最早于1967年在CS2填充池中传播的光脉冲瞬态自聚焦研究中被观察到[1]。到1970年,通过使用皮秒脉冲已在固体和玻璃中观测到SPM。光纤中SPM的最早记录是在芯层充满CS2液体的光纤中实现的[7]。这项工作推动1978年对石英芯光纤中SPM开展了系统研究[9]。本章将SPM作为光纤内可能发生的非线性效应的简单示例进行研究。第4.1节专门讨论纯SPM情况(忽略群速度色散效应,重点关注SPM引起的频谱变化)。第4.2节讨论群速度色散与SPM的联合效应,着重分析SPM诱导的频率啁啾。第4.3节介绍两种解析技术并用于近似求解非线性薛定谔方程。第4.4节将分析扩展至包含自陡峭等高阶非线性效应。
关键词: 群速度色散、自陡峭效应、光谱展宽、光脉冲、频率啁啾、自相位调制、非线性效应、非线性薛定谔方程、自相位调制
更新于2025-09-12 10:27:22
-
顺序电离双连续波包的角向干涉
摘要: 根据近期关于后碰撞相互作用导致亚阈值光激发俄歇过程中能量与角度干涉现象的研究报告(Wang与Robicheaux,《物理评论A》98卷013421页,2018年),在双电子原子两步时间延迟光电离产生的双连续波包中也发现了类似干涉现象。研究详细分析了这些干涉特性与激光脉冲时间宽度、激光频率啁啾及电离时间延迟的关联,并探讨了这些物理量对最终干涉效应的影响。
关键词: 角向干涉、光电离、频率啁啾、激光脉冲、双连续波包、电离时间延迟
更新于2025-09-11 14:15:04