- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Effects of raw material ratio and post-treatment on properties of soda lime glass-ceramics fabricated by selective laser sintering
摘要: A reliable method for fabricating soda lime glass-ceramics by selective laser sintering was demonstrated. The effect of the ratio of glass powder to epoxy resin and sintering process on the properties and microstructure of glass-ceramics was investigated. Research shows that: with the improvement of glass powder proportion, sintering shrinkage rate declined and mechanical strength could be improved gradually. When the mass ratio of glass powder and epoxy resin powder was 18:1 and heat-holding at 740℃ for 3 h, the shrinkage rate of the sample was 21.11% and the bending strength reached 95.45 MPa. Therefore, this research laid a foundation for 3D printing to fabricate high performance and complex structure glass-ceramics.
关键词: Selective Laser Sintering,3D printing,Glass-ceramics,Sintering
更新于2025-09-23 15:19:57
-
Controlled synthesis and panchromatic printing of highly luminescent NaYF4:Ln3+ upconversion hollow microtubes for information encryption on various packaging substrates
摘要: Lanthanide-ion doped β-NaYF4 crystals with bright and tunable upconversion luminescence are urgently demanded in anti-counterfeiting printing. Herein, novel highly luminescent hexagonal NaYF4:Ln3+ upconversion hollow microtubes (UCHMs) were controlled synthesized by a one-pot hydrothermal method employing poly(ethylene imine) (PEI) as ligand. The surface of the synthesized UCHMs was decorated by water-soluble polymer of PEI, rendering the hydrophilic nature of UCHMs. Besides, the synthesized UCHMs exhibited bright upconversion luminescence under the irradiation of a 980 nm laser due to the unique structure and morphology. Time-dependent morphology evolution showed that the formation of UCHMs experience a morphology change from nanoparticles to hexahedron to microprisms, and ultimately to microtubes via a dissolution-reconstruction formation mechanism. Furthermore, the resulting UCHMs were used as pigments for preparation of luminescent inks and their application in anti-counterfeiting printing was explored. To realize panchromatic printing, we prepared three-primary-color (RGB) UCHMs by rational tailoring the doping pairs and molar ratio of the lanthanide ions in UCHMs. Based on the superposition principle of the red-green-blue as three primary colors, a wide array of luminescent inks with panchromatic luminescent colors were prepared. The successful creation of securely light-responsive smart encryption patterns on various packaging substrates such as art paper, aluminum sheet, polyethylene terephthalate (PET) film and cardboard by screen printing was demonstrated. Our strategy provides a new route for controlled synthesis of hydrophilic UCHMs and the as-prepared UCHMs have great potential in application of packaging anti-counterfeiting.
关键词: Rare earth ion-doped NaYF4,Anti-counterfeiting,Hollow microtube,Screen printing,Hydrothermal
更新于2025-09-23 15:19:57
-
The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures
摘要: The manufacturing defects introduced by selective laser melting typically lead to lower fatigue strength and a larger variation in fatigue life compared to conventionally manufactured structures. X-ray micro computed tomography (μCT) is used to characterize the porosity and lack of fusion defects in terms of population, morphology, dimension and location. The defect size and location are combined with the NASA/FLACGRO (NASGRO) fatigue crack growth model to predict the likely fatigue life, in which an effective initial crack length is defined using the cyclic plastic zone and the defect radius. An eXtended defect zone (XDZ) describing the propensity for local plasticity during fatigue around a defect has been shown through numerical analysis to be a good indicator of the ranking of the threat to fatigue caused by differently located manufacturing defects. This indicates that the effect of a defect, initial radius, r0, is likely to be pronounced when its center is within 2r0 of the surface and maximal when it lies just beneath the surface.
关键词: Additive manufacturing,High cycle fatigue (HCF),Fatigue crack initiation and growth,Digital printing,Defect tolerance method
更新于2025-09-23 15:19:57
-
Eliminating the crack of laser 3D printed functionally graded material from TA15 to Inconel718 by base preheating
摘要: High quality manufacturing the functionally graded material (FGM) from TA15 to Inconel718 (IN718) has wide application prospects in the aerospace field. However, the crack always can be found in linear gradient structure of the FGM manufactured by laser 3D printing. In the present study, the crack-free FGM was fabricated by laser 3D printing via base preheating. The microstructure and mechanical properties were analyzed in detail to evaluate the mechanism that the preheating process prevented the formation of the crack. The microstructure of the unpreheated FGM presented that the crack mainly formed in the region between 60% and 80% IN718. Obviously, no cracks formed in the preheated sample because base preheating process made the level of internal stress to be below the yield strength. The tensile strength of the FGM with the preheating was 207 MPa. This is a noticeable improvement compared with that fabricated without the preheating, which could not be measured due to the formation of the crack. These research results indicate that the base preheating process can effectively prevent the formation of the crack during laser 3D printing FGMs from Ti- to Ni-based alloys.
关键词: Laser 3D printing,Functionally graded material,Crack,Microstructure,Preheating
更新于2025-09-23 15:19:57
-
Efficient inkjet-printed blue OLED with boosted charge transport using host doping for application in pixelated display
摘要: Inkjet-printing is a desirable technology for organic light emitting diodes (OLEDs) owing to its compatibility with large-area low-cost full-color pixelated displays. In this work, we proposed a strategy to fabricate highly efficient inkjet-printed blue OLEDs by introducing 3,5-bis(N-car-bazolyl)benzene (mCP) as the host material into organic light emitting layers. By carefully tailoring the weight ratio of mCP to poly[(9,9-dioctyl-2,7-fluorene)-co-(dibenzothiophene-S,S-dioxide)] (PFSO), the device demonstrated superior charge transport capability, leading to balanced charge transport and optimized efficiency. Furthermore, in combination with modifying the mCP: PFSO ink formulation, a low-roughness organic emissive film on Poly(ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) layer was achieved. The performance of the inkjet-printed device has been significantly improved with nearly five times, which exhibits a maximum luminance and an external quantum efficiency of 3743 cd/m2 and 5.03%, respectively. The icing on the cake is that we fabricated a 3-inch blue OLED array device successfully with a brightness uniformity of 92.7%, which shows promising potential in realizing simple structure large-area and high-efficient OLEDs by inkjet printing.
关键词: Blue,Organic light emitting diodes,Charge transport,Inkjet-printing
更新于2025-09-23 15:19:57
-
Inkjet-Printed Organohalide 2D Layered Perovskites for High-Speed Photodetectors on Flexible Polyimide Substrates
摘要: The synthesis of solution-processed two-dimensional organohalide layered (CH3(CH2)3NH3)2(CH3NH3)n?1PbnI3n+1 (n = 2, 3, and 4) perovskites is presented, where inkjet printing was used to fabricate heterostructure flexible photodetector (PD) devices on polyimide (PI) substrates. Inks for the n = 4 formulation were developed to inkjet-print PD devices that were photoresponsive to broadband incoming radiation in the visible regime, where the peak photoresponsivity R was calculated to be ~0.17 A/W, which is higher compared to prior reports, while the detectivity D was measured to be ~3.7 × 1012 Jones at a low light intensity F ≈ 0.6 mW/cm2. The ON/OFF ratio was also high (~2.3 × 103), while the response time τ on the rising and falling edges was measured to be τ ≈ 24 ms and τ ≈ 65 ms, respectively. Our strain-dependent measurements, conducted here for the first time for inkjet-printed perovskite PDs, revealed that the Ip decreased by only ~27% with bending (radius of curvature of ~0.262 cm?1). This work demonstrates the tremendous potential of the inkjet-printed, composition-tunable, organohalide 2D perovskite heterostructures for high-performance PDs, where the techniques are readily translatable toward flexible solar cell platforms as well.
关键词: organohalide 2D perovskites,flexible photodetector,inkjet printing,photoluminescence spectroscopy,strain dependency
更新于2025-09-23 15:19:57
-
Plasmonic Color Makes a Comeback
摘要: The phenomenon behind the earliest photographs is inspiring new research in color printing and displays. One of the earliest surviving photographs shows the mortuary temple of Pharaoh Ramses II, located in the ancient Egyptian capital of Thebes. The sharp clarity of the image, showing a building with a golden glow framed by a blue sky, gives the impression that it could be a modern snapshot, but the image, now in the Metropolitan Museum of Art, was taken in 1844. Rather than being captured by modern, high-resolution methods, this early photograph, called a daguerreotype, was made by exposing a silver iodide-coated surface to light, creating clusters of elemental silver 1?2 nm in diameter. The image was developed with mercury vapor, forming silver?mercury nanoparticles, which scatter light and create the ?nal scene, embodying a resolution impressive even by today’s standards. Two centuries later, the technology responsible for this earliest of photographs is making a comeback: it is inspiring the next generation of ultra-high-resolution color printing and displays.
关键词: plasmonic color,daguerreotype,displays,nanoparticles,color printing
更新于2025-09-23 15:19:57
-
Fast-response humidity sensor based on laser printing for respiration monitoring
摘要: Respiration monitoring equipment has wide applications in daily health monitoring and modern medical diagnosis. Despite significant progress being made in humidity sensors for respiration monitoring, the fabrication of the humidity sensors with low-cost, simple manufacturing process and easy integration remains a challenge. This work reports a facile and inexpensive laser printing fabrication of PEDOT:PSS micron line as a humidity sensor for respiration monitoring. Laser printing technology can process any material into an arbitrary pattern. The PEDOT:PSS micron line humidity sensor has a fast response–recovery time (0.86 s/0.59 s), demonstrating excellent performance for real-time monitoring of human respiration. Furthermore, the PEDOT:PSS micron line humidity sensor can also monitor the respiration of rats under different physiological conditions along with the drug injection. The PEDOT:PSS micron line humidity sensor features simple manufacturing process with commercial materials, and easy integration with wearable devices. This work paves an important step in real-time monitoring of human health and further physiology and pharmacology study.
关键词: respiration monitoring,laser printing,wearable devices,PEDOT:PSS,humidity sensor
更新于2025-09-23 15:19:57
-
Nanogap Plasmonic Structures Fabricated by Switchable Capillarya??Force Driven Selfa??Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS
摘要: Nanogap plasmonic structures, which can strongly enhance electromagnetic fields, enable widespread applications in surface-enhanced Raman spectroscopy (SERS) sensing. Although the directed self-assembly strategy has been adopted for the fabrication of micro/nanostructures on open surfaces, fabrication of nanogap plasmonic structures on complex substrates or at designated locations still remains a grand challenge. Here, a switchable self-assembly method is developed to manufacture 3D nanogap plasmonic structures by combining supercritical drying and capillary-force driven self-assembly (CFSA) of micropillars fabricated by laser printing. The polymer pillars can stay upright during solvent development via supercritical drying, and then can form the nanogap after metal coating and subsequent CFSA. Due to the excellent flexibility of this method, diverse patterned plasmonic nanogap structures can be fabricated on planar or nonplanar substrates for SERS. The measured SERS signals of different patterned nanogaps in fluidic environment show a maximum enhancement factor ≈8 × 107. Such nanostructures in microchannels also allow localized sensing for anticancer drugs (doxorubicin). Resulting from the marriage of top-down and self-assembly techniques, this method provides a facile, effective, and controllable approach for creating nanogap enabled SERS devices in fluidic channels, and hence can advance applications in precision medicine.
关键词: anticancer drugs,doxorubicin,nanogap plasmonic structures,capillary-force driven self-assembly,surface-enhanced Raman spectroscopy,SERS,laser printing
更新于2025-09-23 15:19:57
-
Microstructural investigation of inkjet printed Cu(In,Ga)Se2 thin film solar cell with improved efficiency
摘要: Inkjet printed copper indium gallium diselenide (CIGS) thin film solar cell has attracted tremendous attention because of its various technological benefits as a non-vacuum process. Focused efforts in selenization of inkjet printed films to make the process feasible, are desired. In this work, microstructural investigation of inkjet printed precursor film selenized by rapid thermal processing (RTP) is presented. The optimization of selenization time for transforming metal nitrates precursor ink to CIGS thin film is investigated. Based on the results, the growth mechanism to form CIGS from inkjet printed CIG precursor films is proposed. Systematic study on the molybdenum diselenide (MoSe2) phase evolution during the two-step atmospheric pressure selenization process at the CIGS-Mo interface and its effect on device performance are carried out. Non-uniform inter-diffusion of indium (In) and gallium (Ga) during selenization, resulting in double-layered CIGS, one of the major reason limiting the performance of the devices is investigated through XRD, Raman, FESEM, EDS and Mott-Schottky analysis. The significant improvement in device efficiency from 0.4% to 4.2% is achieved due to microstructural improvement in CIGS films. Investigation on the mechanism of microstructural growth with selenization time affecting final device performance is presenting in this work.
关键词: CIGS,Rapid thermal processing,Microstructural growth,Inkjet printing,Atmospheric pressure selenization
更新于2025-09-23 15:19:57