- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Quantification of Glucose via in situ Growth of Cu2O/Ag Nanoparticles
摘要: The monitoring of glucose levels in blood is extremely important for the effective control of diabetes. Nanomaterial-based approaches for the quantification of glucose typically require two steps: material preparation and the actual glucose measurement. Herein, we report a single-step method that combines these functions via the in situ growth of Cu2O/Ag nanoparticles (NPs). Mechanistically, we use glucose itself to reduce Cu2+ and Ag+ ions that are stabilized with 3-mercaptopropionic acid (3-MPA) and bovine serum albumin (BSA) under alkaline conditions to form Cu2O/Ag NPs and produce a color change in solution due to plasmonic resonance at 400 nm, which can be related back to the concentration of glucose. We study several factors in this reaction, including the molar ratios of the metal ions and 3-MPA, the reaction time, and the temperature to control the synthesis of the Cu2O/Ag NPs and thus their sensitivity toward glucose. Introducing BSA into the system is a key factor for the quantification of glucose in blood without pretreatment, improving the probe’s limit of detection and reducing the sample volumes to 1 μL. This colorimetric assay based on Cu2O/Ag NPs exhibits excellent sensitivity and specificity toward glucose, and a linear relationship with glucose concentrations ranging from 15 to 300 μM and a limit of detection of 9.2 μM. As proof of concept, we demonstrated that the Cu2O/Ag NP probes could successfully detect glucose in two representative blood samples by neglecting interferences from various common species, demonstrating the potential of this technique in point-of-care analysis.
关键词: plasmonic resonance,3-mercaptopropionic acid,bovine serum albumin,silver nanoparticles,glucose quantification,Cu2O
更新于2025-09-23 15:23:52
-
Optimizing Solid-State Ligand Exchange for Colloidal Quantum Dot Optoelectronics: How Much Is Enough?
摘要: Progress in chalcogenide and perovskite CQD optoelectronics has relied in significant part on solid-state ligand exchanges (SSEs): the replacement of initial insulating ligands with shorter conducting linkers on CQD surfaces. Herein we develop a mechanistic model of SSE employing 3-mercaptopropionic acid (MPA) and 1,2-ethanedithiol (EDT) as the linkers. The model suggests that optimal linker concentrations lead to efficient exchange resulting in ca. 200 – 300 exchanged ligands per CQD, a 50% thickness reduction of the initial film, decreased interdot spacing, a 15 nm red-shift in the excitonic absorption peak and a 10x reduction in carrier lifetime. It is a combined effect of these physico-chemical changes that have traditionally made 1% MPA and 10-2% EDT (v:v) the concentrations of choice for efficient CQD optoelectronics.
关键词: Colloidal quantum dots,1,2-ethanedithiol,solid-state ligand exchange,3-mercaptopropionic acid,solar cells
更新于2025-09-23 15:19:57
-
Photostimulated control of luminescence quantum yield for colloidal Ag <sub/>2</sub> S/2-MPA quantum dots
摘要: In this paper, we present the results on photoinduced formation of colloidal Ag2S quantum dots with sizes of 1.5–3 nm passivated by 2-mercaptopropionic acid (Ag2S/2-MPA) in the presence of ethylene glycol. The synthetized colloidal Ag2S/2-MPA QDs have NIR recombination luminescence with its maximum near 800 nm. The control of absorption and luminescence properties of the QDs is achieved by photoactivation. It is shown that photoexposure of colloidal solution of Ag2S/2-MPA QDs leads to an increase in the QD size and monodispersity along side with the growth of the luminescence quantum yield from 1% to 7.9%. Enhancement of the luminescence quantum yield is accompanied by an increase in the average luminescence lifetime up to 190 ns, which is due to the blocking of the nonradiative recombination channel with the radiative recombination rate being (3–5.5) × 105 s?1. It is shown that the purification of the Ag2S/2-MPA solution by a dialysis membrane from regenerated cellulose leads to an increase in the sample monodispersity, as well as stops the photoinduced growth of QDs, and also reduces the degradation of their photoluminescence.
关键词: Ag2S quantum dots,NIR luminescence,2-mercaptopropionic acid,luminescence quantum yield,photoactivation
更新于2025-09-16 10:30:52