- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Interface modified flexible printed conductive films via Ag <sub/>2</sub> O nanoparticle decorated Ag flake inks
摘要: A new approach to stable, low resistance inexpensive printed flexible conductive inks is proposed. Silver inks have been extensively studied and commercialized for applications in printed electronics due to the inherent high conductivity and stability of silver, even in particulate-based percolation networks processed at temperatures compatible with low cost polymer films such as polyethylene terephthalate (PET). Recent interest in flexible and even stretchable circuits, however, has presented new challenges for particle-based inks as mechanical strains can result in the opening of critical particle-to-particle contacts. Here we report a facile, low cost method for the single step synthesis of stable, printable nanoscale Ag2O-decorated Ag flake inks which can be converted to highly conductive Ag films at 150°C curing temperature without the use of limited shelf life organometallics or low metal loading nanoparticles to modify the interface between silver flakes. Analysis indicate that decoration of Ag flakes with Ag2O nanoparticles (NPs) during ink synthesis improves the conductivity and flexibility of printed silver films by forming bridging interconnections between Ag flakes after low temperature reduction of the Ag2O NPs. In this work, printed nano-decorated silver conductors with starting oxide to metal weight ratios of 5:95 exhibited lateral resistivities lower than 1.5×10-5 ? cm, which was 35% less than films derived from undecorated Ag flake inks of the same total Ag loading and binder system. This resistivity difference increased to 45% after cyclic bend testing showing increased resilience to repeated flexing for the nano-decorated inks. Through detailed compositional and morphological characterizations, we demonstrate that such improved conductivity and flexibility is due to a more effective bridging afforded by the in-situ synthesized Ag NPs on the surface of Ag flakes. These properties, combined with the simplified syntheses method of the nano-ink, make the material a viable, advantageous alternative to the limited number of stretchable conductors currently available.
关键词: Ag2O nanoparticle-decorated Ag flake inks,printed conductive films,interface modification,silver ink
更新于2025-11-14 17:04:02
-
Percolation Effects in Electrolytically-Gated WS <sub/>2</sub> /Graphene Nano:Nano Composites
摘要: Mixed networks of conducting and non-conducting nanoparticles show promise in a range of applications where fast charge transport is important. While the dependence of network conductivity on the conductive mass fraction (Mf) is well understood, little is known about the Mf-dependence of mobility and carrier density. This is particularly important as the addition of graphene might lead to increases in the mobility of semiconducting nanosheet-network transistors. Here, we use electrolytic gating to investigate the transport properties of spray-coated composite networks of graphene and WS2 nanosheets. As the graphene Mf is increased, we find both conductivity and carrier density to increase in line with percolation theory with percolation thresholds (~8 vol%) and exponents (~2.5) consistent with previous reporting. Perhaps surprisingly, we find the mobility increases modestly from ~0.1 cm2/Vs (for a WS2 network) to ~0.3 cm2/Vs (for a graphene network) which we attribute to the similarity between WS2-WS2 and graphene-graphene junction resistances. In addition, we find both the transistor on- and off-currents to scale with Mf according to percolation theory, changing sharply at the percolation threshold. Through fitting, we show that only the current in the WS2 network changes significantly upon gating. As a result, the on-off ratio falls sharply at the percolation threshold from ~104 to ~2 at higher Mf. Reflecting on these results, we conclude that the addition of graphene to a semiconducting network is not a viable strategy to improve transistor performance as it reduces the on:off ratio far more than it improves the mobility.
关键词: graphene,ionic liquid,thin film transistor,WS2,carrier density,composite,mobility,Printed electronics
更新于2025-10-22 19:40:53
-
Implementing Inkjet-Printed Transparent Conductive Electrodes in Solution-Processed Organic Electronics
摘要: Through the use of solution-based materials, the field of printed organic electronics has not only made new devices accessible, but also allows the process of manufacture to move toward a high throughput industrial scale. However, while solution-based active layer materials in these systems have been studied quite intensely, the printed electrodes and specifically the transparent conductive anode have only relatively recently been investigated. In this progress report, the use of metal nanoparticles within printed organic electronic devices is highlighted, specifically their use as replacement of the commonly used indium tin oxide transparent conductive electrode within organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). A cross fertilization between the applications is expected since an OPV device is essentially an inversely operated OLED. This report aims to highlight the use of inkjet-printed nanoparticles as cost-effective electrodes for printed optoelectronic applications and discusses methods to improve the conductive and interfacial properties. Finally, in an outlook, the use of these types of metal nanoparticle inks to manipulate light management properties, such as outcoupling, in the device is investigated.
关键词: embedded silver and copper grid,metal nanoparticle ink,inkjet-printed electronics,transparent electrode,solution-processed optoelectronics
更新于2025-09-23 15:23:52
-
[IEEE 2018 13th International Congress Molded Interconnect Devices (MID) - Wu?rzburg (2018.9.25-2018.9.26)] 2018 13th International Congress Molded Interconnect Devices (MID) - Generation of 3D Functional Structures for High- Frequency Applications by Printing Technologies
摘要: Mechatronic Integrated Devices (MID) offer a high level of functional integration, miniaturization and allow a reduction of utilized components. Due to these benefits, the MID technology is constantly pushing forward into new application fields, e.g. for internet of things products. Most smart devices are equipped with sensors and have wireless capabilities to send and receive data. As the market requires faster transmission rates and higher frequencies, microwave technology is gaining more and more significance. One promising technology in order to enable highly integrated products is printed electronics. In this work, the suitability of a novel aerosol-based printing system is evaluated by generating microstrip lines. The created structures are characterized geometrically with a laser scan microscope and electrically with a network analyzer.
关键词: Microwave Technology,Additive Manufacturing,Printed Electronics
更新于2025-09-23 15:23:52
-
Epitaxial Graphene Sensors Combined with 3D Printed Microfluidic Chip for Heavy Metals Detection
摘要: Two-dimensional materials may constitute key elements in the development of a sensing platform where extremely high sensitivity is required, since even minimal chemical interaction can generate appreciable changes in the electronic state of the material. In this work, we investigate the sensing performance of epitaxial graphene on Si-face 4H-SiC (EG/SiC) for liquid-phase detection of heavy metals (e.g., Pb). The integration of preparatory steps needed for sample conditioning is included in the sensing platform, exploiting fast prototyping using a 3D printer, which allows direct fabrication of a microfluidic chip incorporating all the features required to connect and execute the Lab-on-chip (LOC) functions. It is demonstrated that interaction of Pb2+ ions in water-based solutions with the EG enhances its conductivity exhibiting a Langmuir correlation between signal and Pb2+ concentration. Several concentrations of Pb2+ solutions ranging from 125 nM to 500 μM were analyzed showing good stability and reproducibility over time.
关键词: heavy metals detection,3D printed flow cell,reusable lab-on-chip,epitaxial graphene,high sensitivity
更新于2025-09-23 15:23:52
-
Encapsulated Textile Organic Solar Cells Fabricated by Spray Coating
摘要: Solution based processes such as screen printing and spray coating are established processes for fabricating organic solar cells (OSCs) on flexible polymer substrates. However, realizing a flexible solar cell on a textile substrate remains a significant challenge due to the properties of the textile itself, which can present an absorbent, rough and fibrous surface. The textile also limits processing temperatures which can reduce functional materials performance. In this work, we demonstrate an optimized fabrication approach using entirely spray coating to fabricate textile OSCs with a power conversion efficiency (PCE) of 0.4 %. An interface layer is first deposited on the standard woven textile that forms a smooth supporting layer for the subsequent spray coated functional layers. A top encapsulation layer is deposited on top of the fabricated textile OSCs, which improves the durability and life time of the OSCs is evidenced by cyclic bending test.
关键词: Textile solar cells,solution processed fabric solar cells,spray coated solar cells,printed organic photovoltaics,fabric solar cells
更新于2025-09-23 15:23:52
-
Facile preparation of stable reactive silver ink for highly conductive and flexible electrodes
摘要: Stability of conductive ink and mechanical ?exibility of conductive pattern are essential for ?exible printed electronics. In this work, we reported a stable reactive silver ink for the facile fabrication of ?exible electrodes. The ink was mainly composed of silver-isopropanolamine (IPA) complex, formic acid reductant, and hydroxyethyl cellulose (HEC) adhesive agent, and it displayed good chemical stability. The ?exible electrodes on polyimide (PI) substrates were achieved by mask-printing and thermal sintering of the ink, and the e?ects of sintering parameters and HEC adhesive agent content on the electrical and ?exible properties and microstructure evolutions of silver layer were systematically investigated. Consequently, the silver layer sintered at 110 °C yields low electrical resistivity of 12.1 μΩ·cm, which is only eight times higher than that of bulk silver. Furthermore, the sintered silver layer still presents excellent ?exibility and low relative resistances after the bending, twisting, and folding tests. These results demonstrate that the stable reactive silver ink provides a promising and low cost opportunity for low temperature design and fabrication of high performance ?exible printed electronics.
关键词: Reactive silver ink,High conductivity,Silver layer,Flexibility,Printed electronics
更新于2025-09-23 15:23:52
-
Ultrathin Fully Printed Light-Emitting Electrochemical Cells with Arbitrary Designs on Biocompatible Substrates
摘要: Organic electronic devices are often highlighted in terms of cost-efficient solution processing and potential printability. However, few studies are reporting truly full-solution-processed devices taking into account the electrodes as well as all other layers. This results in a production method that only partially benefits from the cost efficiency of solution processing and that still depends on costly and elaborate techniques like evaporation and/or lithography. This lack of knowledge is addressed by presenting a truly fully printed light-emitting electrochemical cell on ultraflexible parylene C substrates usable for conformable electronics. All device parts are fabricated by industrial relevant printing-techniques under ambient atmosphere. Inkjet printing is used for the structuring of the device layout and is therefore able to implement and create arbitrary designs. Further layers are produced by blade coating which is well suited for the coating of large areas. The devices show stable operation at a luminance higher than 100 cd m?2 for 8.8 h, can reach a maximum brightness of 918 cd m?2, and exhibit a turn-on time of 40 s to reach 100 cd m?2. Moreover, biocompatible and biodegradable materials are utilized to allow potential applications in life science and bioelectronics.
关键词: fully printed electronics,light-emitting electrochemical cells,parylene,inkjet,bioelectronics,digital printing,conformable electronics
更新于2025-09-23 15:23:52
-
Determination of prostate cancer biomarker acid phosphatase at a copper phthalocyanine-modified screen printed gold transducer
摘要: In this work, a novel sensor based on immobilized copper phthalocyanine, 2,9,16,23-tetracarboxylic acid-polyacrylamide (Cu(II)TC Pc-PAA) was developed for determination of acid phosphatase (ACP) levels in nanomolar quantities. Detection was based on the measurement of enzymatically generated phosphate, with initial studies focused on phosphate detection at a Cu(II)TC Pc-PAA modified screen-printed gold transducer. The sensor was characterised in relation to operational performance (pH, response time, stability, linearity, and sensitivity) and common anionic interferents (nitrate, sulphate, chloride, and perchlorate). The functionalised surface also facilitated rapid detection of the enzyme bi-product 2-naphthol over the range 5-3000 μM. Quantitation of ACP was demonstrated, realising a linear response range of 0.5-20 nM and LOD of 0.5 nM, which is within the clinical range for this prostate cancer biomarker.
关键词: phosphate,Copper phthalocyanine,acid phosphatase,naphthol,gold screen-printed electrode.
更新于2025-09-23 15:23:52
-
[IEEE 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) - Cleveland, OH, USA (2018.10.17-2018.10.19)] 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) - Like Kleenex for Wearables: A soft, strong and disposable ECG monitoring system
摘要: Although electrocardiography (ECG) monitoring systems have been available in the form of wearable patches for the better part of two decades, they are limited in their ability to be utilized as inexpensive, yet vital short-term measurement devices that are (truly) completely disposable. Advancing current practices in soft conformable electronics, we present a Bluetooth-enabled, fully disposable single-lead ECG patch comprising ink-jet printed Ag-AgCl electrodes and components integrated on a single, flexible hybrid printed circuit board with an average current consumption of 3.6 mA from a 3.0 V stack of four flexible Lithium polymer batteries. As part of the Live Demonstration, our goals are to showcase the patch’s functionality including real-time continuous ECG display and fall detection, and the flexible enclosures and adhesives conferring its unique softness, strength and disposability following a 7-day lifespan.
关键词: Wearable,Printed Electrodes,Disposable,Real-time ECG,Flexible Hybrid PCB
更新于2025-09-23 15:23:52