- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
From the Bottom-Up: Toward Area-Selective Atomic Layer Deposition with High Selectivity
摘要: Bottom-up nanofabrication by area-selective atomic layer deposition (ALD) is currently gaining momentum in semiconductor processing, because of the increasing need for eliminating the edge placement errors of top-down processing. Moreover, area-selective ALD offers new opportunities in many other areas such as the synthesis of catalysts with atomic-level control. This Perspective provides an overview of the current developments in the field of area-selective ALD, discusses the challenge of achieving a high selectivity, and provides a vision for how area-selective ALD processes can be improved. A general cause for the loss of selectivity during deposition is that the character of surfaces on which no deposition should take place changes when it is exposed to the ALD chemistry. A solution is to implement correction steps during ALD involving for example surface functionalization or selective etching. This leads to the development of advanced ALD cycles by combining conventional two-step ALD cycles with correction steps in multistep cycle and/or supercycle recipes.
关键词: surface functionalization,semiconductor processing,area-selective atomic layer deposition,catalysts synthesis,selectivity,bottom-up nanofabrication,selective etching,ALD
更新于2025-09-04 15:30:14
-
Mixed-Phase (2H and 1T) MoS2 Catalyst for a Highly Efficient and Stable Si Photocathode
摘要: We describe the direct formation of mixed-phase (1T and 2H) MoS2 layers on Si as a photocathode via atomic layer deposition (ALD) for application in the photoelectrochemical (PEC) reduction of water to hydrogen. Without typical series-metal interfaces between Si and MoS2, our p-Si/SiOx/MoS2 photocathode showed efficient and stable operation in hydrogen evolution reactions (HERs). The resulting performance could be explained by spatially genuine device architectures in three dimensions (i.e., laterally homo and vertically heterojunction structures). The ALD-grown MoS2 overlayer with the mixed-phase 1T and 2H homojunction passivates light absorber and surface states and functions as a monolithic structure for effective charge transport within MoS2. It is also beneficial in the operation of p-i-n heterojunctions with inhomogeneous barrier heights due to the presence of mixed-phase cocatalysts. The effective barrier heights reached up to 0.8 eV with optimized MoS2 thicknesses, leading to a 670 mV photovoltage enhancement without employing buried Si p-n junctions. The fast-transient behaviors via light illumination show that the mixed-phase layered chalcogenides can serve as efficient cocatalysts by depinning the Fermi levels at the interfaces. A long-term operation of ~70 h was also demonstrated in a 0.5 M H2SO4 solution.
关键词: pinch-off effect,molybdenum disulfide,photoelectrochemical water splitting (PEC),p-i-n heterojunction,atomic layer deposition (ALD)
更新于2025-09-04 15:30:14