- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
P‐type Sb‐doped Cu <sub/>2</sub> O Hole Injection Layer Integrated on Transparent ITO Electrode for Acidic PEDOT:PSS‐Free Quantum Dot Light Emitting Diodes
摘要: It is developed that transparent p-type Sb-doped cuprous oxide (ACO) integrated Sn-doped In2O3 (ITO) film as hole injection layer (HIL) and anode combined electrodes for quantum dot light emitting diodes (QD-LEDs) to substitute acidic PEDOT:PSS HIL based electrode. By graded co-sputtering of ACO and ITO targets, the graded p-type ACO buffer layer can be integrated on the surface region of the ITO electrodes. P-type conductivity of the ACO film for acting as effective HIL in QD-LEDs is confirmed by a positive Hall coefficient (1.74 (cid:1) 10 (cid:3)1). Due to the well-matched work function of p-type ACO on the ITO electrodes, the acidic PEDOT:PSS-free QD-LEDs exhibited typical current-voltage-luminescence of QD-LEDs. The successful operation of PEDOT:PSS-free QD-LED with p-type ACO integrated ITO electrode indicates that ACO and ITO anode graded sputtering is simpler fabrication steps for cost-effective QD-LEDs and elimination of interfacial reactions caused by the acidic PEDOT:PSS layer for reliable QD-LEDs.
关键词: Sn-doped In2O3,acidic PEDOT:PSS,hole injection layer,p-type conductivity,Sb-doped Cu2O,quantum dots light emitting diodes
更新于2025-11-21 10:59:37
-
Transparent Sn-doped In2O3 electrodes with a nanoporous surface for enhancing the performance of perovskite solar cells
摘要: We report on a simple and efficient process to enhance the performance of perovskite solar cells by using ITO electrodes with a nanoporous surface formed by wet-etching of self-agglomerated Ag nanoparticles. Effective removal of the Ag nanoparticles embedded in the surface of the ITO electrodes result in a nanoporous structure without changing the ITO's sheet resistance (10.17 Ω/square) and optical transmittance (89.08%) at a 550 nm wavelength. Examinations with a scanning electron microscope, a transmission electron microscope, and two-dimensional porous mapping show that the nanoporous ITO surface has an increased contact area with the electron transport layer, which enhanced the carrier extraction efficiency of the perovskite solar cells. Compare to perovskite solar cells fabricated on typical ITO with a flat surface morphology, the perovskite solar cells fabricated on the nanoporous-surface ITO show a higher fill factor of 81.1% and a power conversion efficiency of 20.1%. These results indicate that modified ITO surfaces with nano-scale porosity provide a simple and efficient method to improve the power conversion efficiency of perovskite solar cells without a complicated process.
关键词: Contact area,Nanoporous surface,Sn-doped In2O3,Ag agglomeration,Perovskite solar cells
更新于2025-11-21 10:59:37
-
H2 gas sensor based on PdOx-doped In2O3 nanoparticles synthesized by flame spray pyrolysis
摘要: In this work, 0–1.0 wt% PdOx-doped In2O3 nanoparticles were successfully synthesized by flame spray pyrolysis (FSP) in a single step for the first time and investigated for gas-sensing applications. The sensing films were fabricated by spin coating and tested towards hydrogen (H2) at various temperatures ranging from 150 to 350 °C in dry air. The powder and sensing film properties were analyzed by X-ray analyses, nitrogen adsorption and electron microscopy. The spherical and cubic In2O3 nanoparticles with diameters ranging from 2 to 20 nm were observed with no apparent secondary phase of Pd or PdOx. Detailed analyses suggested that Pd species might be in the form of PdOx crystallites embedded in and on grain boundaries of In2O3 nanoparticles. From gas-sensing measurements, hydrogen-sensing characteristics of In2O3 nanoparticles were significantly improved by PdOx doping particularly at the optimal Pd content of 0.50 wt%. The optimal PdOx-doped In2O3 sensing film showed a high response of 3526 towards 10,000 ppm H2 at the optimal working temperature of 250 °C. In addition, PdOx doped In2O3 sensing films displayed good stability and high H2 selectivity against various toxic and flammable gases including H2S, NO2, C2H4O, C2H4, C2H5OH and C2H2.
关键词: Flame spray pyrolysis,PdOx doped In2O3,H2 sensor,Semiconducting metal oxide
更新于2025-09-23 15:22:29
-
Ferromagnetic Order in Substitutional Fe-doped In2O3 Powder
摘要: We report an experimental investigation of the room-temperature ferromagnetism of an Fe-doped In2O3 system. (In1?xFex)2O3(x = 0.00, 0.02, 0.06,0.10,0.14 or 0.18) powders were prepared by a standard solid-state reaction method followed by sintering in air at 1200 °C for 48h. The influence of Fe-doping concentration on the structural and magnetic properties of the In2O3 samples was studied. X-ray diffraction analysis reveals that Fe ions are incorporated into the In3+ sites of the In2O3 lattice without altering the cubic bixbyite structure. Magnetic characterization shows ferromagnetic behavior at room temperature for all the Fe-doped In2O3 samples. The observed ferromagnetism is attributed to the oxygen vacancies induced by substitution of Fe into In3+ sites and vacuum annealing. A model of ferromagnetic exchange interactions was proposed to explain the ferromagnetism in this system.
关键词: DMS,RTFM,Fe doped In2O3,Defects,Ferromagnetism
更新于2025-09-23 15:21:21
-
Polymer Doping Enables a Two-Dimensional Electron Gas for High-Performance Homojunction Oxide Thin-Film Transistors
摘要: High-performance solution-processed metal oxide (MO) thin-film transistors (TFTs) are realized by fabricating a homojunction of indium oxide (In2O3) and polyethylenimine (PEI)-doped In2O3 (In2O3:x% PEI, x = 0.5–4.0 wt%) as the channel layer. A two-dimensional electron gas (2DEG) is thereby achieved by creating a band offset between the In2O3 and PEI-In2O3 via work function tuning of the In2O3:x% PEI, from 4.00 to 3.62 eV as the PEI content is increased from 0.0 (pristine In2O3) to 4.0 wt%, respectively. The resulting devices achieve electron mobilities greater than 10 cm2 V?1 s?1 on a 300 nm SiO2 gate dielectric. Importantly, these metrics exceed those of the devices composed of the pristine In2O3 materials, which achieve a maximum mobility of ≈4 cm2 V?1 s?1. Furthermore, a mobility as high as 30 cm2 V?1 s?1 is achieved on a high-k ZrO2 dielectric in the homojunction devices. This is the first demonstration of 2DEG-based homojunction oxide TFTs via band offset achieved by simple polymer doping of the same MO material.
关键词: PEI-doped In2O3,oxide electronics,homojunctions,2D electron gases
更新于2025-09-10 09:29:36
-
Sulfur doping of M/In <sub/>2</sub> O <sub/>3</sub> (M=Al,W) nanowires with room temperature near infra red emission
摘要: We have investigated the growth of Al doped In2O3 nanowires via the vapor-liquid-solid mechanism at 800?C using Au as a catalyst. We find that the Al is not incorporated into the cubic bixbyite crystal structure of In2O3 but nevertheless was detected in the form of Al2O3. The nanowires had metallic like conductivities and exhibited photoluminescence at 2.3 eV which shifted to 1.5 eV after exposure to H2S above 500?C due to the formation of β-In2S3 and deep donor to acceptor transitions with a lifetime of ≈ 1 μs. The near infra red emission was also observed in W/In2O3 but not in W/SnO2 core-shell nanowires after processing under H2S at 600?C, confirming it is related to β-In2S3. The nanowires remain one dimensional up to 900?C due to the shell which is interesting for the fabrication of high temperature nanowire sensors.
关键词: β-In2S3,M/In2O3 nanowires,Al doped In2O3,room temperature near infra red emission,Sulfur doping
更新于2025-09-09 09:28:46