修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

24 条数据
?? 中文(中国)
  • [IEEE 2019 Workshop on Recent Advances in Photonics (WRAP) - Guwahati, India (2019.12.13-2019.12.14)] 2019 Workshop on Recent Advances in Photonics (WRAP) - Identification of the calcified tissues using laser induced breakdown spectroscopy

    摘要: Ocean water albedo (OWA) plays an important role in the global climate variation. Compared with the achievements in land surface albedo studies, the global distributions of ocean water and sea ice albedo are seldom addressed. This study designed an operational global OWA algorithm based on the three-component reflectance model of the ocean water: sun glint, whitecaps, and water-leaving reflectance. The related achievements in these three areas are reviewed and integrated into the operational algorithm. After the sensitive analysis, the algorithm is compared with previous studies and validated with ground observations at COVE site located 25 km east of Virginia Beach (36.91? N, 75.71? W), and the results indicate that the proposed algorithm is generally consistent with previous parameterization scheme. As an example, the global OWAs in summer and winter 2011 are generated using the remote sensing reflectance data sets via the Moderate Resolution Imaging Spectroradiometer and Modern-Era Retrospective analysis for Research and Applications meteorological reanalysis data set. The generated product includes instantaneous (e.g., local noon) and daily mean OWAs under both clear-sky and white-sky conditions. Upon the examples, the local noon clear-sky OWA shows a significant latitude variation due to the dominance of the solar angle, whereas the white-sky OWA is sensitive to wind speeds and optical constituents. The global distribution of the daily mean OWA exhibits a similar trend to the local noon OWA. However, the daily mean clear-sky OWA is significantly larger than the local noon OWA; this finding should be noted when using OWA products for energy balance research. Additionally, all forms of OWA products exhibit increase in coastal areas with high input of terrestrial matters.

    关键词: water-leaving reflectance,whitecaps,Ocean water albedo (OWA),sun glint

    更新于2025-09-16 10:30:52

  • Photovoltaic systems with vertically mounted bifacial PV modules in combination with green roofs

    摘要: Dependent on the specific conditions flat roofs can be well suited for the installation of large photovoltaic systems in urban areas. For urban designers also other aspects, such as the insulation of buildings, cooling, air purification and water retention play an important role besides the ecological energy generation. The combination of photovoltaics and roof greening can therefore be an interesting fusion. It combines the advantages of a green roof with the local electrical energy production at the place of consumption. However, using a conventional photovoltaic system with tilted modules in south or east-west direction on a green roof causes problems, as typical low tilt angels and high ground coverage rates result in an almost complete coverage of the roof surface. Plants, growing in between the covered areas provoke undesirable shading of the collector surface. Only a frequent maintenance procedure, complicated by dense PV system layouts, can avoid a reduction of the energy yield in the course of time. Vertically mounted specially designed bifacial modules are an option to realize photovoltaic power generation in combination with a functional green roof at low maintenance costs. In this paper, we report on the layout and the energy yield of a corresponding system. Custom-made bifacial modules with 20 cells were produced and vertically installed in landscape orientation. The narrow layout of the modules lowers the wind load and reduces the visibility. The enhanced power in the morning and evening of vertically east-west installed modules can additionally lead to higher self-consumptions rates. Despite having some shading and undergrounds with albedo factors of less than 0.2, the bifacial installation with a rated power of 9.09 kWp achieved a specific yield of the 942 kWh/kWp in one year (11.08.2017–10.08.2018). This is close to typical values of 1000 kWh/kWp achieved for south-facing PV systems in the same region. The impact of the greening on the albedo and the system performance is investigated in more detail with two smaller sub-systems. The energy yields of the two bifacial sub-systems are compared to a monofacial, south-facing reference module. The use of silver-leaved plants in this system resulted in higher albedo values and a more resilient roof greening.

    关键词: PV system,Bifacial,Albedo,Urban areas,Vertical,Green roof

    更新于2025-09-12 10:27:22

  • Computational Modelling of Monolithically Stacked Perovskite/Silicon Tandem Solar Cells Using Monofacial and Bifacial Designs

    摘要: As the efficiency of conventional silicon (Si) solar cell is reaching closer to its thermodynamic limit, its tandem integration with emerging perovskite (PVK) solar cell is being widely explored. In this work, we use self-consistent optical and electrical simulations to computationally explore monolithically stacked 2-terminal (2-T), 2-junction (2-J) PVK/Si tandem solar cell. The optical model is based on Lambert-Beer Law while electrical model is based on drift-diffusion approach. The tandem solar cell is explored for both monofacial and bifacial configurations. The simulations show that the cell design for optimal operations is highly dependent on perovskite thickness and albedo. Under optimal design, the bifacial PVK/Si tandem cell exhibits ?? ≈ 33% for average earth albedo of 30%. Moreover, the cell exhibits a remarkable temperature coefficient of ~ ? 0.27%. Moreover, our simulation results are in good agreement with both experimental and highly intensive optical model based simulation data. With our computationally inexpensive optical model, the optimal cell design for different tandem structures can be explored in a much easier way.

    关键词: monolithic,perovskite,Albedo,bifacial,current-matching,optical model,tandem

    更新于2025-09-12 10:27:22

  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia, Spain (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - A Surface Albedo Product at High Spatial Resolution from a Combination of Sentinel-2 and Landsat-8 Observations

    摘要: Satellite Sentinel-2 offers a global coverage of the Earth at the frequency of a few days with pixel size ranging from 10 to 20 meters. Such spatio-temporal resolution fosters an advanced research in agriculture. Accounting for BRDF (Bidirectional Reflectance Distribution Function) information is required both for target monitoring and surface albedo estimate. BRDF sampling being limited from HR (High Resolution) sensors, the added-value of the BRDF 300m from PROBA-V instrument is assessed. Results are shown for the seasonal cycles 2016 and 2017 using parameterized and detailed radiation transfer models. The validation is carried on for anchor ICOS (Integrated Carbon Observation System) stations located on the French territory.

    关键词: agriculture,albedo,Sentinel-2

    更新于2025-09-10 09:29:36

  • Quantitative Assessment of Desertification in an Arid Oasis Using Remote Sensing Data and Spectral Index Techniques

    摘要: Desertification is an environmental problem worldwide. Remote sensing data and technique offer substantial information for mapping and assessment of desertification. Desertification is one of the most serious forms of environmental threat in Morocco, especially in the oases in the south-eastern part of the country. This study aims to map the degree of desertification in middle Draa Valley in 2017 using a Sentinel-2 MSI (multispectral instrument) image. Firstly, three indices, namely, tasselled cap brightness (TCB), greenness (TCG) and wetness (TCW) were extracted using the tasselled cap transformation method. Secondly, other indices, such as normalized difference vegetation index (NDVI) and albedo, were retrieved. Thirdly, a linear regression analysis was performed on NDVI–albedo, TCG–TCB and TCW–TCB combinations. Results showed a higher correlation between TCW and TCB (r = ?0.812) than with that of the NDVI–albedo (r = ?0.50). On the basis of this analysis, a desertification degree index was developed using the TCW–TCB feature space classification. A map of desertification grades was elaborated and divided into five classes, namely, nondesertification, low, moderate, severe and extreme levels. Results indicated that only 6.20% of the study area falls under the nondesertification grade, whereas 26.92% and 32.85% fall under the severe and extreme grades, respectively. The employed method was useful for the quantitative assessment of desertification with an overall accuracy of 93.07%. This method is simple, robust, powerful, and easy to use for the management and protection of the fragile arid and semiarid lands.

    关键词: NDVI,Sentinel-2,albedo,middle Draa valley,tasselled cap transformation,remote sensing,GIS

    更新于2025-09-10 09:29:36

  • A Physics-based Smart Persistence model for Intra-hour forecasting of solar radiation (PSPI) using GHI measurements and a cloud retrieval technique

    摘要: Short-term solar forecasting models based solely on global horizontal irradiance (GHI) measurements are often unable to discriminate the forecasting of the factors affecting GHI from those that can be precisely computed by atmospheric models. This study introduces a Physics-based Smart Persistence model for Intra-hour forecasting of solar radiation (PSPI) that decomposes the forecasting of GHI into the computation of extraterrestrial solar radiation and solar zenith angle and the forecasting of cloud albedo and cloud fraction. The extraterrestrial solar radiation and solar zenith angle are accurately computed by the Solar Position Algorithm (SPA) developed at the National Renewable Energy Laboratory (NREL). A cloud retrieval technique is used to estimate cloud albedo and cloud fraction from surface-based observations of GHI. With the assumption of persistent cloud structures, the cloud albedo and cloud fraction are predicted for future time steps using a two-stream approximation and a 5-min exponential weighted moving average, respectively. Our model evaluation using the long-term observations of GHI at NREL’s Solar Radiation Research Laboratory (SRRL) shows that the PSPI has a better performance than the persistence and smart persistence models in all forecast time horizons between 5 and 60 min, which is more significant in cloudy-sky conditions. Compared to the persistence and smart persistence models, the PSPI does not require additional observations of various atmospheric parameters but is customizable in that additional observations, if available, can be ingested to further improve the GHI forecast. An advanced technology of cloud forecast is also expected to improve the future performance of the PSPI.

    关键词: Cloud fraction,Global horizontal irradiance,Smart persistence,Solar forecasting,Cloud albedo

    更新于2025-09-09 09:28:46

  • Unmanned aerial system nadir reflectance and MODIS nadir?BRDF-adjusted surface reflectances intercompared?over?Greenland

    摘要: Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo (MCD43) algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS). The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300–920 nm) with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR) products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.

    关键词: NBAR,UAS,Greenland,reflectance,BRDF,Albedo,MODIS

    更新于2025-09-09 09:28:46

  • From Remotely-Sensed Data of Norwegian Boreal Forests to Fast and Flexible Models for Estimating Surface Albedo

    摘要: The importance to consider changes in surface albedo and go beyond simple carbon accounting when assessing climate change impacts of forestry and land use activities is increasingly recognized. However, representation of albedo changes in climate models is complex and highly parameterized, thereby limiting their applications in climate impact studies. The availability of simple yet reliable albedo models can enhance consideration of albedo changes in land use studies. We propose a set of simpli?ed models for estimating surface albedo in a boreal forest. We process and harmonize datasets of remotely-sensed albedo estimates, forest structure parameters, and meteorological records for different forest locations in Norway. By combining linear unmixing with nonlinear programming, we simultaneously produce albedo estimates at the same resolution of the land cover dataset (16 m, notably higher than satellite retrievals) and a variety of ?exible models for albedo predictions. We test different combinations of functional forms, variables, and constraints, including variants speci?c for snow-free conditions. We ?nd that models capture the seasonal pattern of surface albedo and the interactive effect of forest structures and meteorological parameters, and many of them show good statistical scores. The cross-validation exercise shows that the models derived from one area perform reasonably well when applied to other forested areas in Norway, regardless of the temporal and spatial scales. By incorporating changes in forest structure and climate conditions as explicit variables, these models are simple to be used in different applications aiming at estimating albedo changes from forest management and climate change.

    关键词: meteorological parameters,forest management,surface albedo,boreal forests,climate impact assessment

    更新于2025-09-09 09:28:46

  • [IEEE 2018 24th International Conference on Pattern Recognition (ICPR) - Beijing, China (2018.8.20-2018.8.24)] 2018 24th International Conference on Pattern Recognition (ICPR) - Adaptive Albedo Compensation for Accurate Phase-Shift Coding

    摘要: Among structured light strategies, the ones based on phase shift are considered to be the most adaptive with respect to the features of the objects to be captured. Inter alia, the theoretical invariance to signal strength and the absence of discontinuities in intensity, make phase shift an ideal candidate to deal with complex surfaces of unknown geometry, color and texture. However, in practical scenarios, unexpected artifacts could still result due to the characteristics of real cameras. This is the case, for instance, with high contrast areas resulting from abrupt changes in the albedo of the captured objects. In fact, the not negligible size of pixels and the presence of blur can produce a mix of signal integration from adjacent areas with different albedo. This, in turn, would result in a bias in the phase recovery and, consequentially, in an inaccurate 3D reconstruction of the surface. While this problem affects most structure light methods based on phase shift or derived techniques, little effort has been put in addressing it. With this paper we propose a model for the phase corruption and a theoretically sound correction step to be adopted to compensate the bias. The practical effectiveness of our approach is well demonstrated by a complete set of experimental evaluations.

    关键词: structured light,phase shift,albedo compensation,3D reconstruction

    更新于2025-09-09 09:28:46

  • Development of a Multispectral Albedometer and Deployment on an Unmanned Aircraft for Evaluating Satellite Retrieved Surface Reflectance over Nevada’s Black Rock Desert

    摘要: Bright surfaces across the western U.S. lead to uncertainties in satellite derived aerosol optical depth (AOD) where AOD is typically overestimated. With this in mind, a compact and portable instrument was developed to measure surface albedo on an unmanned aircraft system (UAS). This spectral albedometer uses two Hamamatsu micro-spectrometers (range: 340–780 nm) for measuring incident and reflected solar radiation at the surface. The instrument was deployed on 5 October 2017 in Nevada’s Black Rock Desert (BRD) to investigate a region of known high surface reflectance for comparison with albedo products from satellites. It was found that satellite retrievals underestimate surface reflectance compared to the UAS mounted albedometer. To highlight the importance of surface reflectance on the AOD from satellite retrieval algorithms, a 1-D radiative transfer model was used. The simple model was used to determine the sensitivity of AOD with respect to the change in albedo and indicates a large sensitivity of AOD retrievals to surface reflectance for certain combinations of surface albedo and aerosol optical properties. This demonstrates the need to increase the number of surface albedo measurements and an intensive evaluation of albedo satellite retrievals to improve satellite-derived AOD. The portable instrument is suitable for other applications as well.

    关键词: UAS,UAV,MODIS,albedo,LANDSAT,drone,satellite remote sensing,AOD,unmanned aircraft system

    更新于2025-09-04 15:30:14