- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Photocatalytic activity of anatase titanium dioxide nanostructures prepared by reactive magnetron sputtering technique
摘要: In this work, nanostructured titanium dioxide (TiO2) photocatalysts with high optical and structural homogeneity were successfully synthesized by dc reactive magnetron sputtering technique. The TiO2 thin films were produced with high structural homogeneity without any heat treatment. Analysis of the X-ray diffraction patterns and UV–visible spectroscopy gave an indication that the structure of prepared films is anatase with energy band gap of 3.23 eV. The Fourier-transform infrared spectroscopy has confirmed the formation of Ti–O bond. The average size of TiO2 particles in the deposited films was ranging in 5–7 nm. These nanostructures are very applicable as photocatalysts as their photocatalytic activity was determined from the degradation rate with UV irradiation time as the first order reaction rate constant was determined to be 2.4 × 10?3 min?1.
关键词: Anatase phase,Titanium dioxide,Nanostructures,Photocatalysis
更新于2025-09-23 15:22:29
-
Preparation of TiO <sub/>2</sub> nanoparticles by hydrolysis of TiCl <sub/>4</sub> using water and glycerol solvent system
摘要: The anatase phase TiO2 nanoparticles (NPs) were synthesized by precipitation method using TCl4 as a precursor in a new reaction medium containing water and glycerol. The as-synthesized photocatalysts were characterized by Raman spectroscopy, Fourier Transform Infra-red Spectroscopy (FT-IR), UV-Visible spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). The Raman spectra indicate the formation of crystalline anatase phase TiO2 NPs after calcination at 300 and 4000C. TiO2 NPs formation was confirmed by observing the major characteristic, FT-IR vibration bands of Ti-O network. The band gap calculated from UV-Vis DRS spectra ranged from 3.02-3.28 eV. FESEM images exhibit spherical shape TiO2 NPs in the form of nano-clusters with crystallite sizes ranged from 9.50-26.14 nm. FESEM images show that as the calcination temperature increases, the sizes of the TiO2 NPs also increase. The inclusion of glycerol promotes the formation of smaller particles and lowers the band gap of TiO2 NPs.
关键词: precipitation method,TiO2 nanoparticles,hydrolysis,anatase phase,Raman spectroscopy,FESEM,UV-Visible spectroscopy,water and glycerol solvent system,FT-IR,TiCl4
更新于2025-09-09 09:28:46
-
Antibacterial and photocatalytic activity of anatase phase Ag-doped TiO2 nanoparticles
摘要: A simple and new solid-state molten-salt method to synthesise silver (Ag)-doped titanium dioxide (TiO2) nanoparticles for solar light-induced photocatalytic applications is examined. Ag-doped TiO2 nanoparticles with varied Ag content ranging from 3 to 10% were synthesised by a single-step molten-salt synthesis method. The effect of Ag content on the antibacterial and photocatalytic activity of nanoparticles was tested. The prepared nanoparticles were studied by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectrometry, ultraviolet–visible (UV–vis) diffusive re?ectance spectrometer (UV–vis DRS) and powder X-ray diffraction. The SEM image of nanoparticles clearly showed the presence of agglomerated spherical particles. The EDX analysis of the particles con?rmed successful doping of particles in the presence of the Ag in the particles. The doping of Ag in TiO2 produced TiO2 pure anatase phase. According to UV–vis DRS results, increasing Ag-doped content in the Ag-doped TiO2 resulted in a higher visible absorption capability of the materials. Ag doping also improved the antibacterial and photocatalytic activity of TiO2 nanoparticles. The maximum photocatalytic activity under light irradiation was observed for 5% Ag-doped TiO2.
关键词: antibacterial activity,anatase phase,photocatalytic activity,molten-salt method,Ag-doped TiO2
更新于2025-09-09 09:28:46