修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • One Step Deposition of PEDOT–PSS on ALD Protected Silicon Nanowires: Toward Ultrarobust Aqueous Microsupercapacitors

    摘要: Herein, we propose a fast and simple deposition method of a highly robust pseudocapacitive material based on a straightforward drop-cast of a commercial PEDOT:PSS solution onto 3 nm alumina-coated silicon nanowires. The composite material produced (PPSS-A@SiNWs) displays remarkable capacitive behavior with a specific capacitance of 3.4 mF·cm?2 at a current density of 2 A·g?1 in aqueous Na2SO4 electrolyte. Moreover micro-supercapacitor (MSC) devices based on this material exhibits outstanding lifetime capacity retaining 95% of its initial capacitance after more than 500 000 cycles at a current density of 0.5 A·g?1, a specification which exceeds by far most of the stability of conducting polymers previously reported in the literature. In term of pure energy storage performances, the system is able to reach excellent specific energy and power values of 8.2 mJ·cm?2 and of 4.1 mW·cm?2, respectively, at a high current density of 2 A·g?1. Results are systematically compared to both the state-of-the-art silicon based aqueous on-chip supercapacitors and to that of the pristine alumina-coated silicon nanowires (A@SiNWs) to highlight the contribution of the conductive PEDOT:PSS polymer (PPSS in this study). Hence, the aforementioned one-step deposition represents a simple, cheap and scalable method to thoroughly increase the cycling stability of a well-known conductive polymer, PEDOT?PSS, while drastically increasing the electrochemical performances of an existing technology, the Si NW-based MSCs using aqueous electrolytes.

    关键词: microsupercapacitors,silicon nanowires,conductive polymer,aqueous electrolyte,ultrarobust,nanocomposite

    更新于2025-09-19 17:15:36

  • Facile synthesis and characterization of V2O5 nanobelt bundles containing plasmonic Ag for photoelectrochemical water splitting under visible light irradiation

    摘要: V2O5 nanobelt bundle (NBB) photoanodes were synthesized from commercial V2O5 powder via a facile, room-temperature aqueous solution technique. The V2O5 NBBs were several micrometers long and 15–25 nm wide, with an orthorhombic V2O5 structure, a crystallite size of 63 nm, and an optical bandgap of 2.19 eV. The V2O5 NBBs containing plasmonic Ag showed signi?cantly lower charge transfer resistance than the pure V2O5 NBBs. The charge transfer resistance was further reduced to 21.02 Ω by adding 10% methanol to the 0.1 M KOH electrolyte as a hole scavenger. The water-splitting activity of the V2O5 and V2O5/Ag photoanodes was tested in 0.1 M KOH; a very low photocurrent density of 0.5 μA/cm2 was observed under visible light illumination. The low photocurrent was ascribed to a build-up of photogenerated holes at the photoelectrode/aqueous electrolyte. The addition of methanol drastically increased the photocurrent of the V2O5 NBB photoelectrode. A maximum photocurrent density of 0.2 mA/cm2 was achieved for up to 230 s under light illumination for the V2O5 NBBs containing plasmonic Ag in KOH and methanol, which was 400 times higher than that of the photoanode without a hole scavenger.

    关键词: Aqueous electrolyte,Nanowires,Hole scavenger,Ag plasmonic,Water splitting activity

    更新于2025-09-16 10:30:52