修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Puffing quaternary FexCoyNi1-x-yP nanoarray via kinetically controlled alkaline etching for robust overall water splitting; ?¢±???è???3??????oè?¨???FexCoyNi1a??xa??yP??????é?μ?????????é?? ???è£?è§£?°′??§è??;

    摘要: Designing and constructing bifunctional electrocatalysts with high efficiency, high stability and low cost for overall water splitting to produce clean hydrogen fuel is attractive but highly challenging. Here we constructed puffed quaternary FexCoyNi1?x?yP nanoarrays as bifunctional electrodes for robust overall water splitting. The iron was used as the modulator to manipulate the electron density of NiCoP nanoarray, which could increase the positive charges of metal (Ni and Co) and P sites. The resultant electronic structure of FexCoyNi1?x?yP was supposed to balance the adsorption and desorption of H and accelerate the oxygen evolution reaction (OER) kinetics. Moreover, the morphological structure of FexCoyNi1?x?yP was modulated through the kinetically controlled alkaline etching by using the amphoteric features of initial FeCoNi hydroxide nanowires. The resultant puffed structure has rich porosity, cavity and defects, which benefit the exposure of more active sites and the transport of mass/charge. As a result, the cell integrated with the puffed quaternary FexCoyNi1?x?yP nanoarrays as both the cathode and anode only requires the overpotentials of 25 and 230 mV for hydrogen evolution reaction (HER) and OER at the current density of 10 mA cm?2 in alkaline media and a cell voltage of 1.48 V to drive the overall water splitting. Moreover, the puffed FexCoyNi1?x?yP demonstrates remarkable durability for continuous electrolysis even at a large current density of 240 mA cm?2.

    关键词: water splitting,puffed nanoarray,electrocatalysis,morphology control,alkaline etching

    更新于2025-09-23 15:21:01

  • <i>In situ</i> growth of α-Fe <sub/>2</sub> O <sub/>3</sub> @Co <sub/>3</sub> O <sub/>4</sub> core–shell wormlike nanoarrays for a highly efficient photoelectrochemical water oxidation reaction

    摘要: Photoelectrochemical (PEC) water splitting represents a promising strategy to convert solar energy into chemical energy in the form of hydrogen, but its performance is severely limited by the sluggish water oxidation reaction. Herein, for the first time, we report the direct assembly of an ultrathin, uniform, and dense layer of Co3O4 on wormlike nanostructured hematite (WN-α-Fe2O3) to form a large-area and high-density WN-α-Fe2O3@Co3O4 core–shell nanoarray via in situ hydrothermal growth followed by calcination, in which the electrostatic force between WN-α-Fe2O3 and the reactants, pH- and temperature-controlled structures of WN-α-Fe2O3, and ultralow nucleation rate of Co3O4 precursors all play critical roles. The obtained heteronanostructure array shows a photocurrent density of 3.48 mA cm?2, which is 4.05 times higher than that of pristine WN-α-Fe2O3 (0.86 mA cm?2), an onset potential of ~0.62 V, 60 mV lower than that of α-Fe2O3 (~0.68 V), and a photoconversion efficiency of 0.55%, 3.93 times higher than that of WN-α-Fe2O3 (0.14%). This is among the highest performances reported for Fe2O3-based photoanodes for water splitting. It is discovered that the Co3O4 shells can significantly enhance the charge separation, accelerate the charge transport and transfer, and reduce the charge transfer resistance from the photoelectrode to the electrolyte for a fast water oxidation reaction, thereby greatly promoting the PEC water oxidation performance of pristine WN-α-Fe2O3. This work not only creates a novel low-cost and Earth-abundant WN-α-Fe2O3@Co3O4 photoelectrode with superior PEC water oxidation performance and provides scientific insights into the enhancement mechanism, but also offers a general strategy for the in situ growth of water oxidation catalysts on various photoelectrodes with 3-D complex geometries for PEC water splitting.

    关键词: α-Fe2O3,water oxidation reaction,Co3O4,Photoelectrochemical water splitting,core–shell nanoarray

    更新于2025-09-23 15:19:57

  • Determination of prostate cancer marker Zn2+ with a highly selective surface-enhanced Raman scattering probe on liquid–liquid self-assembled Au nanoarrays

    摘要: As the concentration of Zn2+ in patients with prostate cancer is much less than that in healthy persons, Zn2+ concentration can be used as a marker to expediently screen prostate cancer. In this study, a sensitive and highly selective surface-enhanced Raman scattering (SERS) method to detect Zn2+ concentration in human prostatic fluids by utilizing water-insoluble 2-carboxyl-2′-hydroxyl-5′-sulfoformazylbenze (Zincon) as a SERS probe based on self-assembled Au nanoarrays at a liquid–liquid interface between n-hexane and Au colloids was proposed. Zincon showed remarkably different SERS bands before and after coordinating Zn2+ in the controlled conditions (70 μL of ethanol, 500 μL of n-hexane, pH value of 7.1 and 10 s of vortex mixing time), which can be used in quantifying Zn2+ with characteristic peaks. The proposed SERS method presented a good linear relationship ranging from 0.5 to 10 μmol/L and a satisfactory detection limit of 0.1 μmol/L as well as low interference with other metal ions. Moreover, the detection results are close to those of the conventional standard atomic absorption spectroscopy (AAS) method.

    关键词: SERS,Au nanoarray,Zincon,Zn2+,Liquid-liquid self-assembly,Prostate cancer

    更新于2025-09-12 10:27:22