- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Shape-Dependent Aggregation of Silver Particles by Molecular Dynamics Simulation
摘要: In crystallization, nanoparticle aggregation often leads to the formation of orderly structures, even single crystals. Why can nanoparticles form orderly structures and what is the mechanism dominating their orderly aggregation? These questions raise interesting research problems, but the occurrences that could answer them often fail to be directly observed, since the interaction among particles is invisible. Here, we report an attempt to discover the interaction and aggregation of building blocks through a computer simulation, focusing on the shape effect of building blocks on the aggregation. Four types of silver building blocks were selected, each consisting of (100) and (111) facets, but the ratio of these two facets was different. It was found that the area of facets played an important role in selecting the aggregation mode. The facets with a large area and high energy had a high possibility of aggregation. In addition, the effects of solvent viscosity and temperature were also investigated. High viscosity and low temperature enhanced the orderliness of aggregation. This paper reports a detailed view of the aggregation process of silver nanoparticles, which is expected to be helpful in understanding the structure evolution of materials in nonclassical crystallization.
关键词: silver nanoparticle,surface energy,facet area,collision frequency,aggregation process
更新于2025-09-04 15:30:14
-
Direct Synthesis of Gold Nanoparticle‐Over‐Nanosheet for Sensitive SERS Detection
摘要: A simple ethanol sol-based method for the synthesis of gold nanosheets (AuNSs) and gold nanoparticle-over-nanosheet (AuNP/NS) is developed. Gold nanoparticles (AuNPs) with average sizes of ≈8 nm are grown in situ on the surface of the AuNS, which forms a NP/NS structure that obtains strong, significantly improved, surface-enhanced Raman spectroscopy activity with the magnitude ≈2 and ≈6 orders higher than the simplex AuNP and AuNS, respectively. This performance is mainly attributed to uniform AuNPs that are closely packed over AuNS and coupled with NP–NS and NP–NP interactions. The NP–NS–GP (the gap between NP–NS) is narrower than NP–NP–GP in which much stronger and steadier plasmon resonance is obtained that can significantly enhance the Raman signal. The results show that single-crystalline AuNS is an ideal substrate, which can be further coated with other metallic NPs to form a new flexible, high-activity and AuNS-based nanocomposite for a wide variety of applications.
关键词: gold nanoparticle-over-nanosheet (AuNP/NS) composite,2D gold nanosheet (AuNS),surface-enhanced Raman spectroscopy (SERS)
更新于2025-09-04 15:30:14
-
Resonance Energy Transfer in Arbitrary Media: Beyond the Point Dipole Approximation
摘要: In this work, we present a comprehensive theoretical and computational study of donor/acceptor resonance energy transfer (RET) beyond the dipole approximation, in arbitrary inhomogeneous and dispersive media. The theoretical method extends Fo?rster theory for RET between particles (molecules or nanoparticles) to the case where higher multipole transitions in the donor and/or acceptor play a significant role in the energy transfer process. In our new formulation, the energy transfer matrix element is determined by a fully quantum electrodynamic expression, but its evaluation requires only classical electrodynamics calculations. By means of a time domain electrodynamical approach (TED), the matrix element evaluation involves the electric and magnetic fields generated by the donor and evaluated at the position of the acceptor, including fields associated with transition electric dipoles, electric quadrupoles, and magnetic dipoles in the donor, and the acceptor response to the electric and magnetic fields and to the electric field gradient. As an illustration of the benefits of the new formalism, we tested our method with a 512 atom lead sulfide (PbS) quantum dot as the donor/acceptor in vacuum, and with spherical nanoparticles (toy model) possessing designed transition multipoles. This includes an analysis of the effects of interferences between multipoles in the energy transfer rate. The results show important deviations from the conventional Fo?rster dipole theory that are important even in vacuum but that can be amplified by interaction with a plasmonic nanoparticle.
关键词: multipole transitions,resonance energy transfer,plasmonic nanoparticle,quantum electrodynamics,dipole approximation,RET
更新于2025-09-04 15:30:14
-
Effect of Surface Coating of Gold Nanoparticles on Cytotoxicity and Cell Cycle Progression
摘要: Gold nanoparticles (GNPs) are usually wrapped with biocompatible polymers in biomedical field, however, the effect of biocompatible polymers of gold nanoparticles on cellular responses are still not fully understood. In this study, GNPs with/without polymer wrapping were used as model probes for the investigation of cytotoxicity and cell cycle progression. Our results show that the bovine serum albumin (BSA) coated GNPs (BSA-GNPs) had been transported into lysosomes after endocytosis. The lysosomal accumulation had then led to increased binding between kinesin 5 and microtubules, enhanced microtubule stabilization, and eventually induced G2/M arrest through the regulation of cadherin 1. In contrast, the bare GNPs experienced lysosomal escape, resulting in microtubule damage and G0/G1 arrest through the regulation of proliferating cell nuclear antigen. Overall, our findings showed that both naked and BSA wrapped gold nanoparticles had cytotoxicity, however, they affected cell proliferation via different pathways. This will greatly help us to regulate cell responses for different biomedical applications.
关键词: surface biocompatibility,microtubule,proteomics,nanoparticle location,cell cycle
更新于2025-09-04 15:30:14