- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning
摘要: With the rising use of photovoltaic and ongoing installation of large-scale photovoltaic systems worldwide, the automation of photovoltaic monitoring methods becomes important, as manual/visual inspection has limited applications. This research work deals with automatic detection of photovoltaic module defects in Infrared images with isolated deep learning and develop-model transfer deep learning techniques. An Infrared images dataset containing infrared images of normal operating and defective modules is collected and used to train the networks. The dataset is obtained from Infrared imaging performed on normal operating and defective photovoltaic modules with lab induced defects. An isolated learned model is trained from scratch using a light convolutional neural network design that achieved an average accuracy of 98.67%. For transfer learning, a base model is first developed (pre-trained) from electroluminescence images dataset of photovoltaic cells and then fine-tuned on infrared images dataset, that achieved an average accuracy of 99.23%. Both frameworks require low computation power and less time; and can be implemented with ordinary hardware. They also maintained real time prediction speed. The comparison shows that the develop-model transfer learning technique can help to improve the performance. In addition, we reviewed different kind of defects detectable from infrared imaging of photovoltaic modules, that can help in manual labelling for identifying different defect categories upon access to new huge data in future studies. Last of all, the presented frameworks are applied for experimental testing and qualitative evaluation.
关键词: Isolated deep learning,Develop-model transfer deep learning,Automatic defect detection,Thermography,Infrared images,Photovoltaic (PV) modules
更新于2025-09-19 17:13:59
-
CNN based automatic detection of photovoltaic cell defects in electroluminescence images
摘要: Automatic defect detection is gaining huge importance in photovoltaic (PV) field due to limited application of manual/visual inspection and rising production quantities of PV modules. This study is conducted for automatic detection of PV module defects in electroluminescence (EL) images. We presented a novel approach using light convolutional neural network architecture for recognizing defects in EL images which achieves state of the art results of 93.02 % on solar cell dataset of EL images. It requires less computational power and time. It can work on an ordinary CPU computer while maintaining real time speed. It takes only 8.07 milliseconds for predicting one image. For proposing light architecture, we perform extensive experimentation on series of architectures. Moreover, we evaluate data augmentation operations to deal with data scarcity. Overfitting appears a significant problem; thus, we adopt appropriate strategies to generalize model. The impact of each strategy is presented. In addition, cracking patterns and defects that can appear in EL images are reviewed; which will help to label new images appropriately for predicting specific defect types upon availability of large data. The proposed framework is experimentally applied in lab and can help for automatic defect detection in field and industry.
关键词: PV cell cracking,Automatic defect detection,Convolutional neural network (CNN),Electroluminescence,Deep learning,Photovoltaic (PV) modules
更新于2025-09-19 17:13:59