修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

8 条数据
?? 中文(中国)
  • Contactless parametric characterization of bandgap engineering in p-type FinFETs using spectral photon emission

    摘要: In the last decade it has become increasingly popular to use germanium enriched silicon in modern field effect transistors (FET) due to the higher intrinsic mobility of both holes and electrons in SiGe as compared to Si. Whether used in the source/drain region (S/D) as compressive stressor, which is an efficient mobility booster on Si channel devices, or as channel material, the SiGe increases channel carrier mobility and thus enhancing device performance. Because the germanium content modifies the effective bandgap energy EG, this material characteristic is an important technology performance parameter. The bandgap energy can be determined in an LED-like operation of electronic devices, requiring forward biased p-n junctions. P-n junctions in FETs are source or drain to body diodes, usually grounded or reversely biased. This investigation applies a bias to the body that can trigger parasitic forward operation of the source/drain to body p-n junction in any FET. Spectral photon emission (SPE) is used here as a non-destructive method to characterize engineered bandgaps in operative transistor devices, while the device remains fully functional. Before applying the presented technique to a p-type FinFET device, it is put to the proof by verifying the nominal silicon bandgap on an (unstrained) 120 nm technology FET. Subsequently the characterization capability for bandgap engineering is then successfully demonstrated on a SiGe:C heterojunction bipolar transistor (HBT). In a final step, the bandgap energy EG of a 14/16 nm p-type FinFET was determined to be 0.84 eV, which corresponds to a Si0.7Ge0.3 mixture. The presented characterization technique is a contactless fault isolation method that allows for quantitative local investigation of engineered bandgaps in p-type FinFETs.

    关键词: p-n junction,Heterojunction bipolar transistor,Bandgap characterization,p-channel FinFET,SiGe, strained Si,Body diode, parasitic operation,Bandgap engineering,Body bias voltage,HBT,Contactless fault isolation,Spectral photon emission,MOSFET

    更新于2025-09-23 15:23:52

  • Bandgap engineering in CuO nanostructures: Dual-band, broadband, and UV-C photodetectors

    摘要: In this work, the bandgap of CuO (p-type semiconductor) has been engineered from an indirect bandgap of (cid:2)1 eV to a direct bandgap of 4 eV just by tuning the nanostructure morphology and midgap defect states. The absorption in near-infrared (NIR) and visible regions is ordinarily suppressed by controlling the growth parameters. Considering the increasing scope and demand of varying spectral range (UV-C to NIR) photodetectors, the systematic variation of the available density of states (DOS) at a particular energy level in CuO nanostructures has been utilized to fabricate dual-band (250 nm and 900 nm), broadband (250 nm–900 nm), and UV-C (250 nm) photodetectors. The sensitivity and detectivity of the photodetector for broadband detectors were (cid:2)103 and 2.24 (cid:3) 1011 Jones for the wavelengths of 900 nm and 122 and 2.74 (cid:3) 1010 Jones for 250 nm wavelength light, respectively. The UV-C detector showed a sensitivity of 1.8 and a detectivity of 4 (cid:3) 109 Jones for 250 nm wavelength light. A plausible mechanism for the photoconduction has been proposed for explaining the device operation and the effect of variation in available DOS. The obtained photodetectors are the potential candidates for future optoelectronic applications.

    关键词: Broadband photodetectors,Bandgap engineering,CuO nanostructures,Dual-band photodetectors,UV-C photodetectors

    更新于2025-09-23 15:21:01

  • Dual-site mixed layer-structured FA <sub/>x</sub> Cs <sub/>3a??x</sub> Sb <sub/>2</sub> I <sub/>6</sub> Cl <sub/>3</sub> Pb-free metal halide perovskite solar cells

    摘要: Structure engineering of trivalent metal halide perovskites (MHPs) such as A3Sb2X9 (A ? a monovalent cation such as methyl ammonium (MA), cesium (Cs), and formamidinium (FA) and X ? a halogen such as I, Br, and Cl) is of great interest because a two dimensional (2D) layer structure with direct bandgap has narrower bandgap energy than a zero dimensional (0D) dimer structure with indirect bandgap. Here, we demonstrated 2D layer structured FACs2Sb2I6Cl3 MHP by dual-site (A and X site) mixing. Thanks to the lattice-symmetry change by I–Cl mixed halide, the shortest ionic radius of Cs, and the lower solution energy due to dual-site mixing, the FACs2Sb2I6Cl3 MHP had 2D layer structure and thereby the MHP solar cells exhibited improved short-circuit current density.

    关键词: metal halide perovskites,2D layer structure,bandgap engineering,dual-site mixing,solar cells

    更新于2025-09-23 15:21:01

  • Effects of oxygen pressure on PLD-grown Be and Cd co-substituted ZnO alloy films for ultraviolet photodetectors

    摘要: We report on the synthesis of Be and Cd co-substituted ZnO (BexCdyZn1?x?yO) quaternary alloy films on c-plane sapphire substrates by pulsed laser deposition. The results show that all deposited films exhibit single-phase wurtzite structure with a surface roughness less than 1.5 nm. By adjusting the O2 pressure during growth, the optical bandgap of the film is tuned from ~3.3 to ~3.52 eV. At 5 V bias, the BexCdyZn1-x-yO-based photodetector exhibits a remarkable photoresponse in the ultraviolet region with low dark current (~ 16.2 pA) and high detectivity (9.31· 1010 Jones). The rise and decay times of the photodetectors based on BexCdyZn1-x-yO (order of seconds) are clearly faster than those based on pure ZnO (order of minutes). Higher O2 pressure results in better crystalline quality of BexCdyZn1-x-yO film and thus lower dark current and faster photoresponse in the device due to the decrease of oxygen vacancy-related defects under oxygen-rich growth conditions. These results indicate that oxygen pressure plays an important role in the growth of high-quality BexCdyZn1-x-yO alloy films, which have great potential in fabricating high-performance ultraviolet photodetectors.

    关键词: Bandgap engineering,BexCdyZn1-x-yO alloys,UV photodetectors,Pulsed laser deposition

    更新于2025-09-23 15:21:01

  • Surface/edge functionalized boron nitride quantum dots: Spectroscopic fingerprint of bandgap modification by chemical functionalization

    摘要: Promising properties of boron nitride nanomaterials such as their chemical, thermal, and mechanical stability have made them suitable materials in a various range of applications. However, their low electrical conductivity and wide bandgap, particularly in the case of boron nitride quantum dots (BNQDs), have given rise to severe limitations. Efforts on bandgap engineering through doping and surface functionalization have gained little success due to their high thermodynamic stability and inertness. Herein, we present a novel approach to functionalize BNQDs by hydroxyl, methyl, and amine functional groups aiming to adjust the electronic structure. The successful exfoliation is demonstrated by transmission electron microscopy, and surface functionalization is elaborated by FTIR and XPS. Modifications of the electronic and optical properties are shown by UV–Vis and PL measurements. The formation of two absorption edges in bandgaps of BNQDs due to the delocalizing of the Px and Pz orbitals as result of edge/surface passivating groups is demonstrated. Splitting of the main transition bandgap of bulk BN from 5.9 eV to two absorption edges for hydroxyl (2.3-3.6 eV), methyl (3.2-4.2 eV), and amine (3.1-4 eV) is shown. These findings offer a bandgap engineering approach for BNQDs, which can boost their applications in quantum emitters (nanophotonics) and photovoltaic devices.

    关键词: Surface science,Nanoparticle semiconductor,Quantum confinement,Bandgap engineering

    更新于2025-09-12 10:27:22

  • Bandgap engineering of TiO2 nanoparticles through MeV Cu ions irradiation

    摘要: The effect of 5 MeV Cu++ ions irradiation on structural and optical properties of Anatase TiO2 nanoparticles (TiO2-NPs) is investigated. For this purpose, TiO2-NPs are irradiated with different Cu++ ions ?uences, ranging from 1 (cid:1) 1015 to 1 (cid:1) 1016 ions/cm2 at room temperature. XRD results con?rm the Ti3O7 phase appear at the dose of 5 (cid:1) 1015 ions/cm2 and peak intensity of Ti3O7 phase gradually increases with an increase of Cu++ ions irradiation dose. At the dose of 1 (cid:1) 1016 ions/cm2 TiO2 Anatase phase were transformed to Rutile phase. Same observations are con?rmed from Raman spectroscopy. High resolution transmission electron microscopy (HRTEM) reveals that morphology converted into wavy shape and crystal structure detrioted with increase Cu ion irradiation dose to form vacancy loops and interstitial loops. Scanning electron microscopy (SEM) shows that TiO2-NPs have been fused to form a cluster of nanoparticles at high Cu ion beam dose, while bandgap of TiO2-NPs reduces from 3.19 eV to 2.96 eV as a function of Cu++ irradiation ?uence. These phase transformations and crystal damage are the responsible for optical bandgap reduction. The mechanism for the currently observed phase transformation of TiO2 and coalescence of TiO2-NPs are discussed in term of thermal spikes model.

    关键词: Coalescence of NPs,Bandgap engineering,Cu++ irradiation,Rutile phase,TiO2 nanoparticles

    更新于2025-09-10 09:29:36

  • European Microscopy Congress 2016: Proceedings || Is the electronic structure of few layer transition metal dichalcogenides always two dimensional ?

    摘要: The electronic structure of the transition metal dichalcogenides (TMDs) is investigated using angle-resolved photoemission spectroscopy (ARPES). We observe a new class of layered materials that can be prepared in various thicknesses down to single layers. Compared with the more well-known graphene, the TMDs are semiconductors and can be more useful in applications where an energy gap is essential. Our results show that the electronic structure of the TMDs is highly dependent on the number of layers, with a transition from indirect to direct bandgap as the thickness is reduced to a single layer. This transition is accompanied by a significant enhancement in photoluminescence intensity, making monolayer TMDs promising candidates for optoelectronic applications.

    关键词: Angle-resolved photoemission spectroscopy,Bandgap engineering,Electronic structure,Optoelectronic applications,Transition metal dichalcogenides

    更新于2025-09-10 09:29:36

  • [IEEE 2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) - Singapore (2018.7.16-2018.7.19)] 2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) - Characterization of Bandgap Engineering on Operative Transistor Devices by Spectral Photon Emission

    摘要: In modern IC technologies, it is very common to use germanium enriched silicon in order to increase field effect transistor (FET) channel carrier mobility for high performance. The germanium content modifies the effective semiconductor band gap EG. Thus, the bandgap energy EG is an important technology performance parameter. EG can be obtained in an LED-like operation of electronic devices, requiring forward biased p-n junctions. P-n junctions in FETs are source or drain to body diodes, usually grounded or reversely biased. This investigation applies a bias to the body that can trigger parasitic forward operation of the source/drain to body p-n junction in any FET. Spectral photon emission (SPE) is taken here as non-destructive in operative method to characterize engineered bandgaps transistor devices, while the device remains fully functional. Proving this technique with the nominal silicon bandgap on an (unstrained) 120nm technology FET, the characterization capability for bandgap engineering is successfully demonstrated using SiGe:C HBT. In IC technology, Ge enriched silicon is recently often used to increase channel carrier mobility. As a next step, 14/16nm p-type FinFET devices have been investigated by applying a bias voltage to the body and thereby activating one of the body/diffusion p-n junctions in forward bias. By measuring the spectral distribution of emission intensity through the backside of the operating device with an InGaAs detector, EG of the engineered bandgap can be determined in the FinFETs as well, in case of the investigated p-type FinFETs to 0.84 eV. This opens a new path for contactless fault isolation by quantitative local determination of bandgap engineering.

    关键词: Bandgap engineering,body diode,heterojunction bipolar transistor,body bias voltage,contactless fault isolation,parasitic operation,FinFET,germanium,MOSFET,p-n junction,bandgap characterization,spectral photon emission,SiGe,HBT

    更新于2025-09-04 15:30:14