修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Effect of beam wobbling on laser welding of aluminum and magnesium alloy with nickel interlayer

    摘要: The influence of conventional laser keyhole welding and beam wobbling was evaluated at two weld travel speeds and power settings. Fracture in linear lap welds would occur during specimen preparation due to the presence of Al-rich brittle fusion zone, unless one utilizes a circular laser wobbling path (at 1000 Hz). Wobbling provided better integrity due to the presence of a Mg-rich ductile fusion zone and a larger bonded width. It can be concluded that laser beam wobbling enhances joint quality by widening the joint area and mitigating formation of brittle secondary phases at the joint fusion zone.

    关键词: Aluminum,Magnesium,Interlayer,Laser welding,Beam wobbling,Microstructure

    更新于2025-11-28 14:24:20

  • Laser transmission welding of thermoplastic with beam wobbling technique using particle swarm optimization

    摘要: Laser transmission welding is growing day by day with an increase of the uses of thermoplastic materials. This article presents the effect of various process parameters on weld strength and weld seam width obtained. The transparent polycarbonate and black carbon filled PMMA, each of 2.8 mm thickness have been joined by using low power laser. Here, effect of wobble frequency and wobble width are studied along with other process parameters. It is observed that weld seam width much depends upon the wobble width and the effect of wobble frequency is minimum. It has been observed that laser beam wobbling provides the greater weld strength by enlargement of joint area. Moreover, Beam wobbling plays a significant role to achieve better weld strength and weld width. Response surface methodology has been used to model the laser welding process parameters and responses of welding through regression analysis. The results of ANOVA reveal that the models formed appropriately predict the responses within the range of process parameters. A confirmation experiment has also been conducted to validate the results. A multi objective optimization has been used to find the optimum solution by Particle swarm optimization technique.

    关键词: Polycarbonate,Acrylic,Low power laser,Weld strength,Beam wobbling,Particle swarm optimization

    更新于2025-09-23 15:19:57