修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Supersandwich Nanowire/Quantum Dots Sensitization Structure-Based Photoelectrochemical a??Signal-Ona?? Platform for Ultrasensitive Detection of Thrombin

    摘要: A new photoelectrochemical (PEC) “signal-on” sensing platform based on photoactive material Bi2O3-ZnO and CdS quantum dots (QDs) sensitizer were fabricated for ultrasensitive determination of thrombin by constructing supersandwich nanowires. The CdS/ZnO/Bi2O3 sensitization structure with excellent energy level arrangement remarkably improved photoelectric conversion efficiency due to efficient separation of electron-hole. Moreover, the DNA supersandwich nanowire is ingeniously synthesized in one step by simple dislocation hybridization, which could carry a large amount of sensitized material CdS QDs. More importantly, with Exo III-assisted multiple amplification, the proposed “signal-on” platform demonstrated a detection range of 10 fM to 1 μM with the detection limit of 1.41 fM for thrombin. Impressively, the PEC platform can successfully detect human serum samples with good accuracy. Above all, the CdS/ZnO/Bi2O3 sensitization photoelectric biosensing platform by using DNA nanowire in combination with Exo III-multiple amplification open new sensitized amplification paths for supersensitive biosensing and bioanalysis.

    关键词: photoelectrochemical,CdS quantum dots,signal-on,thrombin detection,Bi2O3-ZnO,supersandwich nanowires,Exo III-assisted multiple amplification

    更新于2025-09-19 17:13:59

  • Investigating the efficiency of α-Bismuth zinc oxide heterostructure composite/UV-LED in methylene blue dye removal and evaluation of its antimicrobial activity.

    摘要: Heterostructured α-Bismuth zinc oxide (α-Bi2O3-ZnO) photocatalyst was fabricated by a facile and cost-effective, ultrasound assisted chemical precipitation method followed by hydrothermal growth technique. As synthesized α-Bi2O3-ZnO photocatalyst showed enhanced photocatalytic performance for the MB dye degradation in contrast to pure ZnO and α-Bi2O3. Light emitting diodes (UV-LED) were used in the experimental setup, which has several advantages over conventional lamps like wavelength selectivity, high efficacy, less power consumption, long lifespan, no disposal problem, no warming-up time, compactness, easy and economic installation. XRD study confirmed the presence of both the lattice phases i.e. monoclinic and hexagonal wurtzite phase corresponding to α-Bi2O3 and ZnO in the α-Bi2O3-ZnO composite photocatalyst. FESEM images showed that α-Bi2O3-ZnO photocatalyst is composed of dumbbell like structures of ZnO with breadth ranging 4-5 μm and length ranging from 10 to 11 μm respectively. It was observed that α-Bi2O3 nanoparticles were attached on the ZnO surface and were in contact with each other. Low recombination rate of photo-induced electron-hole pairs, due to the migration of electrons and holes between the photocatalyst could be responsible for the 100 % photocatalytic efficiency of α-Bi2O3-ZnO composite. In addition, photocatalyst was also observed to show the excellent antimicrobial activity with 1.5 cm zone of inhibition for 1 mg/L dose, against the human pathogenic bacteria (S. aureus).

    关键词: Heterostructure,antimicrobial activity,Methylene blue,Photocatalyst,α-Bi2O3-ZnO,UV-LED,α-Bi2O3

    更新于2025-09-11 14:15:04