- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Néel transition in the multiferroic BiFeO <sub/>3</sub> -0.25PbTiO <sub/>3</sub> nanoparticles with anomalous size effect
摘要: The role of size reduction on the structural parameters, antiferromagnetic transition temperature (TN), and spin reorientation transition temperature of BiFeO3-0.25PbTiO3 (BF-0.25PT) has been studied. Rietveld analysis using high resolution synchrotron x-ray powder diffraction data confirms that the space group of BF-0.25PT solid solutions is monoclinic Cc and not rhombohedral R3c for both bulk and nanocrystalline powders. This settles a longstanding controversy about the structure of these solid solutions toward the BiFeO3 rich end of the morphotropic phase boundary in the BiFeO3-xPbTiO3 system. Using magnetization and neutron powder diffraction data, we show that the Néel transition temperature (TN) of BF-0.25PT increases from 445 K for bulk to 480 K for 150 nm particle size. This is in marked contrast to the scaling theories of phase transitions in finite size systems. We also show that the spin reorientation transition occurring below TN in bulk monoclinic compositions like BF-0.25PT is suppressed in the nanocrystalline samples of ~150 nm particle size. Based on Rietveld refined structural parameters, we show that the asymmetry and non-linearity of the Fe-O-Fe superexchange pathways grow with decreasing particle size and that they exhibit a strong correlation with TN. We believe that the substantially enhanced Dzyaloshinskii-Moriya interaction with decreasing particle size as a result of asymmetric and non-collinear Fe-O-Fe superexchange pathways may be the key factor in raising the TN on decreasing the particle size. These observations present a new facet of type-I multiferroic materials, where superexchange pathways are intimately dependent on the ferroelectric distortion.
关键词: multiferroic,antiferromagnetic transition,BiFeO3-PbTiO3,size effect,Dzyaloshinskii-Moriya interaction,Néel transition,nanoparticles
更新于2025-09-23 15:23:52
-
Improved ferroelectric response of pulsed laser deposited BiFeO <sub/>3</sub> -PbTiO <sub/>3</sub> thin films around morphotropic phase boundary with interfacial PbTiO <sub/>3</sub> buffer layer
摘要: (1 ? x)BiFeO3-xPbTiO3 (BF-xPT) is an interesting material for sensing and actuating devices with large polarization near the morphotropic phase boundary (MPB) (x = 0.30) in the bulk form. However, pulsed laser deposition (PLD) grown (BF-xPT) thin films usually show high electrical leakage and, hence, saturated ferroelectric hysteresis loops are only obtained at subzero temperatures. In this article, we report on high room temperature ferroelectric polarization with saturated hysteresis loops in pulsed laser deposited (BF-xPT) polycrystalline thin films of compositions near the MPB with the use of a thin buffer layer of PbTiO3 (PT). The thin films possessed a perovskite structure with excellent crystallinity and exhibit the presence of a monoclinic (Cm) phase (MA-type) for x = 0.20–0.25 and a mixture of a monoclinic (Cm) phase and a tetragonal (P4mm) phase for x = 0.30–0.35 compositions. The thin films with composition x = 0.25 exhibit a monoclinic phase and yield very large room temperature ferroelectric polarization (2Pr > 80μC/cm2), perhaps the highest room temperature ferroelectric polarization and excellent piezoelectric properties in PLD deposited (BF-xPT) thin films of near-MPB composition. Furthermore, the evolution of ferroelectricity with PT content, studied using room temperature Raman spectroscopy, reveals a correlation with lattice dynamics and stereochemical activity of Bi. Piezoforce domain analysis of the thin films reveals that ferroelectric polarization and electrical leakage in the thin films are intricately related to the type of domains present in the samples, viz., 180°, 109°, 90°, and 71° due to differences in the nature of the domain walls.
关键词: thin films,pulsed laser deposition,PbTiO3 buffer layer,ferroelectric response,BiFeO3-PbTiO3,morphotropic phase boundary
更新于2025-09-19 17:13:59
-
Construction of high <i>T</i> <sub/>c</sub> BiScO <sub/>3</sub> -BiFeO <sub/>3</sub> -PbTiO <sub/>3</sub> and its enhanced piezoelectric properties by sintering in oxygen atmosphere
摘要: The high-temperature piezoelectric ceramics 0.36[(1 ? x)BiScO3-xBiFeO3]-0.64PbTiO3 was constructed by introducing BiFeO3 with a high Curie temperature (Tc ~ 830 °C) in the 0.36BiScO3-0.64PbTiO3 binary system. In terms of microstructure, low-melting BiFeO3 plays a role as a sintering aid, lowering the sintering temperature of the ceramic and signi?cantly increasing the grain size. At the same time, the crystal structure shifts from the initial morphotropic phase boundary to the tetragonal phase side, and the Tc increased gradually with increasing BiFeO3 content. Under the conventional air atmosphere sintering conditions, the Tc of the sample with x = 0.3 can reach ~500 °C, and the piezoelectric constant d33 is 125 pC/N. Compared with that, the d33 of the same composition sample sintered in an oxygen atmosphere is increased to 165 pC/N, which is mainly due to the decrease in the content of oxygen vacancies that helps to increase poling electrical ?eld. Moreover, the oxygen-sintered specimen exhibits an excellent thermal stability in a wide temperature range from room temperature to 450 °C, indicating that it is a promising candidate for ultra-high-temperature piezoelectric devices applications.
关键词: high-temperature piezoelectric ceramics,thermal stability,BiScO3-BiFeO3-PbTiO3,sintering in oxygen atmosphere,piezoelectric properties
更新于2025-09-11 14:15:04