- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Remote sensing estimation of the biomass of floating Ulva prolifera and analysis of the main factors driving the interannual variability of the biomass in the Yellow Sea
摘要: Since 2007, green tide blooms with Ulva prolifera as the dominant species have occurred every summer in the Yellow Sea. Biomass is a critical parameter used to describe the severity of green tide blooms. In this study, we analyzed the relationships between several indices (normalized difference vegetation index (NDVI), floating algae index (FAI), ratio vegetation index (RVI), enhanced vegetation index (EVI), ocean surface algal bloom index (OSABI), Korea Ocean Satellite Center (KOSC) approach) and the biomass per unit area of Ulva prolifera by using the in situ measurements from a water tank experiment. EVI, NDVI, and FAI showed strong exponential relationships with Ulva prolifera biomass per unit area. In order to apply the relationships to satellite remote sensing data, the impacts of the atmosphere (different aerosol optical depth at 550 nm) and mixed pixels to the relationships were analyzed. The results show that atmosphere has little effect on the relationship between EVI and Ulva prolifera biomass per unit area with R2 = 0.94 and APD (the average percentage deviation) = 19.55% when EVI is calculated from Rrc (Rayleigh-corrected reflectance), and R2 = 0.95 and APD = 17.53% when EVI is calculated from Rtoa (top-of-atmosphere reflectance). Due to the low sensitivity to the atmosphere, the EVI relationship can be directly utilized in the top-of-atmosphere (TOA) reflectance without atmospheric correction. In addition, the EVI was slightly affected by mixed pixels with the APD only increased by ~10%. The EVI relationship was then applied to a long MODIS image time series to obtain the maximal total biomass of floating Ulva prolifera in the Yellow Sea from 2007 to 2016. The results showed that the maximum and minimum total biomass occurred in 2016 (~1.17 million tons) and 2012 (~0.074 million tons), respectively. The main factors that caused the inter-annual biomass variability were analyzed. The total amount of nutrients from Sheyang River which was the largest river on the northern coast of Jiangsu Province, and Porphyra cultivation in the Radial Sand Ridges of Jiangsu Province had both strong correlation with Ulva prolifera total biomass.
关键词: Atmosphere effect,Remote sensing,Ulva prolifera,Ocean color,Biomass,EVI
更新于2025-09-19 17:15:36
-
Light absorption by organic aerosol emissions rivals that of black carbon from residential biomass fuels in South Asia
摘要: Solid biomass fuel-based residential cookstoves are the largest source of aerosol emissions in the Indian subcontinent. For assessing radiative forcing due to this pollutant source, laboratory-generated cookstove performance datasets are currently used, which have established black carbon (BC) as the dominant atmospheric warming aerosol species. We report findings on the strong near-ultraviolet wavelength absorption characteristics of emitted organic carbon (OC) aerosol from household stove combustion of nationally-representative biomass fuels. OC emission from cookstoves have been conventionally parameterized in emission inventory and regional climate models to be non-light-absorbing in the visible solar spectra. We conclude that light-absorbing OC contributes roughly as much as BC to total absorption cross-sections, thereby enhancing the associated positive forcing estimates. Our findings underscore the importance of including light-absorbing OC within the subcontinent’s air quality and climate impact assessment frameworks.
关键词: South Asia,black carbon,radiative forcing,biomass fuels,organic carbon,light absorption,cookstoves,aerosol emissions
更新于2025-09-19 17:13:59
-
Quantum dots are conventionally applicable for wide-profiling of wall polymer distribution and destruction in diverse cells of rice
摘要: Plant cell walls represent enormous biomass resources for biofuels, and it thus becomes important to establish a sensitive and wide-applicable approach to visualize wall polymer distribution and destruction during plant growth and biomass process. Despite quantum dots (QDs) have been applied to label biological specimens, little is reported about its application in plant cell walls. Here, semiconductor QDs (CdSe/ZnS) were employed to label the secondary antibody directed to the epitopes of pectin or xylan, and sorted out the optimal conditions for visualizing two polysaccharides distribution in cell walls of rice stem. Meanwhile, the established QDs approach could simultaneously highlight wall polysaccharides and lignin co-localization in different cell types. Notably, this work demonstrated that the QDs labeling was sensitive to profile distinctive wall polymer destruction between alkali and acid pretreatments with stem tissues of rice. Hence, this study has provided a powerful tool to characterize wall polymer functions in plant growth and development in vivo, as well as their distinct roles during biomass process in vitro.
关键词: Glycan immunolabeling,Plant cell wall,Biomass,Rice,Quantum dots,Chemical pretreatment
更新于2025-09-19 17:13:59
-
Direct inlet probe atmospheric pressure photo and chemical ionization coupled to ultra-high resolution mass spectrometry for the description of lignocellulosic biomass
摘要: Lignocellulosic biomass, in particular wood, is a complex mixture containing cellulose, hemicellulose, lignin, and other trace compounds. Chemical analysis of these biomasses, especially lignin components, is a challenge. Lignin is a highly reticulated polymer that is poorly soluble and usually requires chemical, enzymatic, or thermal degradation for its analysis. Here, we studied the thermal degradation of lignocellulosic biomass using a direct insertion probe (DIP). DIP was used with two ionization sources: atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) coupled to ultra-high-resolution mass spectrometry. Beech lignocellulosic biomass sample were used to develop the DIP-APCI/APPI methodology. Two other wood species (maple and oak) were analyzed after optimization of DIP parameters. The two ionization sources were compared at first and showed different response towards beech sample, according to the source specificity. APPI was more specific to lignin degradation compounds, whereas APCI covered a larger variety of oxygenated compounds, e.g., fatty acids, polyphenolics compounds, in addition to lignin degradation products. The study of the thermo-desorption profile gave information on the different steps of lignocellulosic biomass pyrolysis. The comparison of the three feed sample types (oak, maple, and beech), using principal component analysis (PCA) with DIP-APCI experiments, showed molecular level differences between beech wood pellets and the two others wood species (maple and oak).
关键词: high-resolution mass spectrometry,APPI,APCI,direct inlet probe,biomass
更新于2025-09-19 17:13:59
-
Glucose-derived porous carbon as a highly efficient and low-cost counter electrode for quantum dot-sensitized solar cells
摘要: Biomass-derived porous carbon is widely used in supercapacitors, carbon dioxide capture and lithium–sulfur batteries owing to its advantages such as wide sources, low cost and good stability. However, it is rarely used in quantum dot-sensitized solar cells (QDSCs). Here, glucose-derived porous carbon was obtained by hydrothermal carbonization followed with high-temperature KOH activation, and employed as an efficient counter electrode (CE) for QDSCs. The CV, EIS and Tafel-polarization analysis showed that porous carbon exhibits excellent catalytic activity for reduction of Sn2?. The CE based on porous carbon activated at 900 °C (C900) presents best performance with interface charge transfer resistance (Rct) of 2.4 Ω cm2 due to the synergy between high graphitization degree and large specific surface area. The power conversion efficiency (PCE) of the QDSCs assembled with a CdS/CdSe sensitized TiO2 photoanode and the C900 CE is up to 5.61% under one sun illumination. The excellent catalytic activity of C900 is attributed to its large specific surface area and porous structure and high degree graphitization. This suggests that glucose-derived porous carbon can become a potential low-cost and efficient CE material for QDSCs.
关键词: biomass-derived porous carbon,KOH activation,quantum dot-sensitized solar cells,hydrothermal carbonization,counter electrode,glucose
更新于2025-09-19 17:13:59
-
Techno-economic investigation of a grid-connected photovoltaic-biomass hybrid system for shaping the sustainable electrification in Ayeyarwady delta of Myanmar
摘要: This article presents the techno-economic investigation of the Grid-connected Hybrid system by harnessing the abundant potentials of Renewables in Ayeyarwady Delta of Myanmar. The focused village in this study, Ma Yan Chaung, is geographically situated at latitude 16°35'7"N and longitude 94°54'7"E. Its annual average Solar GHI (Global Horizontal Irradiation) is 5.08 kWh per m2 per day. It is included in the electrified (Grid arrived) village tract of Moke Soe Kwin and located in the Myaungmya Township. Site survey to that village was conducted in May, 2019. According to the collected data, the available Biomass is 480 tonnes per day and the estimated demand of the focused village is 2296 kWh per day with 361.7 kW peak. The thousands of different models are simulated in the powerful Microgrid tool, HOMER (Hybrid Optimization of Multiple Energy Resources) Pro (version 3.13.3). Then, the feasible Grid-connected system is proposed with 100 kW PV; 1,800 kW Biomass; 45 kW Converter; total NPC (Net Present Cost) 4,255,082 $; levelized COE (Cost of Energy) 0.01575 $ per kWh; Initial Capital 524,000 $, and Operating Cost 219,337 $. Annual Energy Sold to Grid is 15,045,299 kWh and Average Monthly Energy Sold is 1253775 kWh. The simulated results significantly demonstrate the good performance and the available benefits of the proposed system. Moreover, this system can shape the Sustainable Electrification to tackle the Climate Crisis in Ayeyarwady Delta Region of Myanmar.
关键词: Grid-connected PV-Biomass Hybrid system,Ayeyarwady Delta,village Ma Yan Chaung,HOMER Pro,Myanmar
更新于2025-09-19 17:13:59
-
Direct Laser Etching Free‐Standing MXene‐MoS <sub/>2</sub> Film for Highly Flexible Micro‐Supercapacitor
摘要: The biomass hydrolysis residue (BHR) is the residue consisting of mainly lignin after the biomass-to-ethanol process. A combustion kinetic comparison of the biomass material (BM), BHR, and three main components (lignin, cellulose, and hemicellulose) is studied by thermogravimetry (TG) using the Kissinger method and Flynn?Wall?Ozawa (FWO) method under five different heating rates. The results show that the ignition temperature (Ti) and burnout temperature (Tb) of BHR are both higher than those of BM. BM burns more sufficient than BHR because it contains more fixed carbon content. The results show that the activation energy calculated by the Kissinger method for the corn cob hydrolysis residue (CCHR), corn straw hydrolysis residue (CSHR) and corn cob (CC) is 188.08, 192.76 and 205.76 kJ/mol, respectively. The results calculated by the FWO method show that, when the mass conversion (α) is small, EBHR > EBM, as α increases, E of BM gradually exceeds that of BHR. This could explain the phenomenon why BHR ignites earlier than BM but burns out later than BM. The power law (P4 and P2) reaction models are proper to describe the experimental behavior of BHR and BM, respectively. This paper also verifies that, on the premise of an accurate measurement of the three main components in BM and BHR, the TG curves and kinetic parameters of BM and BHR can be predicted.
关键词: thermogravimetry,combustion kinetics,biomass hydrolysis residue,Flynn?Wall?Ozawa method,Kissinger method
更新于2025-09-19 17:13:59
-
Research on Carrier Recovery Algorithm in Coherent Optical Communication System
摘要: The generation of tar in biomass gasification is highly undesirable since the condensation and agglomeration of tar causes clogging and contamination of downstream equipment, leading to low energy efficiency and high maintenance cost. Currently, the most widely used methods for tar reforming are catalytic reforming and plasma reforming. However, the main drawbacks for these two processes are: (i) the rapid catalyst deactivation caused by poisoning, sintering and coke deposition for catalytic reforming, and (ii) low energy efficiency, low selectivity of syngas and the formation of undesirable byproducts for plasma reforming. Recently, therefore, the hybrid plasma-catalysis system has attracted much attention for tar reforming, since it can overcome the above-mentioned drawbacks and generate a synergy effect. The addition of catalyst in plasma could change the discharge properties of plasma, and the plasma could also modify the catalyst property and change the status of reactants. At present, very few review articles have reported and compared the performances of tar reforming in the plasma-only, catalysis-only and hybrid plasma-catalysis system. Therefore, this review paper focus on: (i) the deactivation characteristics and modification methods of steam-reforming catalysts, as well as the mechanism of tar catalytic reforming; (ii) the performance of tar reforming in various plasma reactors and the reaction mechanism based on the analysis of byproducts and energetic plasma species; and (iii) the possible synergistic effect of plasma and heterogeneous catalyst in a hybrid plasma-catalysis system caused by the multiple interactions of plasma and catalysts.
关键词: Catalytic reforming,Biomass gasification,Synergistic effect,Plasma reforming,Tar
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE) - Aswan City, Egypt (2019.10.23-2019.10.25)] 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE) - Integrated Single Output Sensor Distributed MPPT for Photovoltaic Systems: A Novel Per-Cell Approach
摘要: The temporal variations (diurnal and annual) in arboreal (εTree) and bare soil (εSoil) dielectric constants and their correlation with precipitation were examined for several trees in Japan. A significant (1 σ (standard deviation) and 2 σ) εTree increase is observed after rainfall at 89.8% and 90.5% probability. However, rainfall does not always induce significant εTree increases. Rainfall of more than 5 mm/day can induce 1 σ εTree increase at a 59.6% probability. In order to examine whether the increase in εTree affects the L-band σ0 variation in a forest, the four-year temporal variation of the L-band backscattering coefficient (σ0) was estimated from observations by the Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar. Observed maximum absolute deviations from the mean over the forest area were 1.0 and 1.2 dB for σ0 HV, respectively, and 4.0 and 3.0 dB over open land. σ0 and σ0 and rainfall correlations show that εTree and σ0 Forest are proportional to precipitation integrated over seven or eight days; εSoil and σ0 Open land are proportional to precipitation integrated over three days. This finding indicates that εTree variations influence σ0 Forest areas. A stronger correlation between σ0 HV and precipitation is observed in several sites with low σ0 HV, where less biomass is expected, and several sites with high σ0 HV, where more biomass is expected. A weaker correlation between σ0 HV and precipitation is observed for several sites with high σ0 HV. These differences may be explained by the different contributions of double bounce scattering and potential transpiration, which is a measure of the ability of the atmosphere to remove water from the surface through the processes of transpiration. The two other results were as follows: 1) The functional relation between aboveground biomass and σ0 showed dependence on precipitation data, this being an effect connected with seasonal changes of the εTree. This experiment reinforces the fact that the dry season is preferable for retrieval of woody biomass from inversion of the functional dependence of SAR backscatter and for avoiding the influence of rainfall. 2) The complex dielectric constant for a tree trunk, which is measured between 0.2 and 6 GHz, indicates that free water is dominant in the measured tree.
关键词: forest,temporal variation,dielectric constant,Biomass,Phased Array type L-band Synthetic Aperture Radar (PALSAR)
更新于2025-09-19 17:13:59
-
Secondary Bonds Modifying Conjugatea??Blocked Linkages of Biomassa??Derived Lignin to Form Electron Transfer 3D Networks for Efficiency Exceeding 16% Nonfullerene Organic Solar Cells
摘要: Fabricating high-efficient electron transporting interfacial layers (ETLs) with isotropic features is highly desired for all-directional electron transfer/collection from an anisotropic active layer, achieving excellent power conversion efficiency (PCEs) on nonfullerene acceptor (NFA) organic solar cells (OSCs). The complicated synthesis and cost-consumption in exploring versatile materials arouse great interest in the development of binary-doping interlayers without phase separation and flexible manipulation. Herein, for the first time, a novel cathode interfacial layer based on biomass-derived demethylated kraft lignin (DMeKL) is proposed. Features of multiple phenolic-hydroxyl (PhOH) and uniform-distributed render DMeKL to exhibit an excellent bonding capacity with amino terminal substituted perylene diiminde (PDIN), and successfully form a high-efficient isotropic electron transfer 3D network. Synchronously, secondary bonds completely modify conjugate-blocked linkages of DMeKL, significantly enhance the electron transporting performance on cross-section and vertical-sections, and repair the contact of PDIN with active layer. The DMeKL/PDIN-based 3D-network exhibits well-matched work function (WF) (–4.34 eV) with cathode (–4.30 eV) and energy level of electron acceptor (–4.11 eV). DMeKL/PDIN-based NFAs-OSC shows excellent short-circuit current density (26.61 mA cm–2) and PCE (16.02%) beyond the classic PDIN-based NFA-OSC (25.64 mA cm–2, 15.41%), which is the highest PCEs among biomaterials interlayers. The results supply a novel method to achieve high-efficient cathode interlayer for NFAs-OSCs.
关键词: secondary bonds,nonfullerene acceptor organic solar cells,electron transfer 3D network,biomass-derived lignin,power conversion efficiency
更新于2025-09-19 17:13:59