修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Effects of a Fluorinated Donor Polymer on the Morphology, Photophysics, and Performance of All-Polymer Solar Cells based on Naphthalene Diimide-Arylene Copolymer Acceptors

    摘要: Naphthalene diimide (NDI)-biselenophene copolymer (PNDIBS) and NDI-selenophene copolymer (PNDIS) and the fluorinated donor polymer PM6 were used to investigate how a fluorinated polymer component affects the morphology and performance of all-polymer solar cells (all-PSCs). Although the PM6:PNDIBS blend system exhibits a high open-circuit voltage (Voc = 0.925 V) and desired low optical bandgap energy loss (Eloss = 0.475 eV), the overall power conversion efficiency (PCE) was 3.1%. In contrast, PM6:PNDIS blends combine a high Voc (0.967 V) with a high fill factor (FF = 0.70) to produce efficient all-PSCs with 9.1% PCE. Furthermore, the high performance PM6:PNDIS all-PSCs could be fabricated by various solution processing approaches and at active layer thickness as high as 300 nm without compromising photovoltaic efficiency. The divergent photovoltaic properties of PNDIS and PNDIBS when paired respectively with PM6 are shown to originate from the starkly different blend morphology and blend photophysics. Efficient PM6:PNDIS blend films were found to exhibit a vertical phase stratification along with lateral phase separation while the molecular packing had a predominant face-on orientation. Bulk lateral phase separation with both face-on and edge-on molecular orientations featured in the poor performing PM6:PNDIBS blend films. Enhanced charge photogeneration and suppressed geminate and bimolecular recombinations with 99% charge collection probability found in PM6:PNDIS blends strongly differ from the poor charge collection probability (66%) and high electron-hole pair recombination seen in PM6:PNDIBS. Our findings demonstrate that beyond the generally expected enhancement of Voc, a fluorinated polymer component in all-PSCs can also exert a positive or negative influence on photovoltaic performance via the blend morphology and blend photophysics.

    关键词: Naphthalene Diimide-Arylene Copolymer,Fluorinated donor polymer,Vertical phase stratification,All-polymer solar cells,Thick-film active layer,Blend Morphology

    更新于2025-09-23 15:19:57

  • Elucidating Roles of Polymer Donor Aggregation in All-Polymer and Non-Fullerene Small-Moleculea??Polymer Solar Cells

    摘要: The aggregation behavior of polymers plays a crucial role in determining the optical, electrical, and morphological properties of donor-acceptor blends in both all-polymer solar cells (all-PSCs) and non-fullerene small molecule acceptor-polymer solar cells (NFSMA-PSCs). However, direct comparison of the impacts on two different systems has not been reported, although it is important to design universal polymer donors (PDs). Herein, three PDs with different side chains (P-EH, P-SEH and P-Si) are designed to study the PD aggregation effects on the blend morphology and device performance of both all-PSCs and NFSMA-PSCs. It is observed that the aggregation property of PDs is a critical factor in determining the optimal blend morphologies and ultimately the device performances in both the PSC systems. Furthermore, PD aggregation effects on device performance is significantly more impactful in all-PSCs than in NFSMA-PSCs. The P-Si PD exhibiting the strongest aggregation behavior in a processing solvent produces the most severe phase separation in the blend with a polymer acceptor, resulting in the lowest power conversion efficiency (PCE) of all-PSCs. In contrast, when P-Si is used in an NFSMA-PSC, a well-mixed blend morphology is observed, which results in the highest PCE of over 12%. These different roles dependent on PD aggregation mainly originate from the difference in molecular size of polymer acceptor and small molecule acceptor, which influences the entropic contribution to the formation of blend morphology. Our work provides a comprehensive understanding on the PD aggregation-blend morphology relationship in different all-PSC and NFSMA-PSC systems, which serves as an important guideline for the design of universal PDs for both all-PSCs and NFSMA-PSCs.

    关键词: polymer solar cells,all-polymer solar cells,non-fullerene small molecule acceptor-polymer solar cells,polymer donor aggregation,blend morphology,power conversion efficiency

    更新于2025-09-19 17:13:59