修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • Monolithic Wafer Scale Integration of Silicon Nanoribbon Sensors with CMOS for Lab-on-Chip Application

    摘要: Silicon ribbons (SiRi) have been well-established as highly sensitive transducers for biosensing applications thanks to their high surface to volume ratio. However, selective and multiplexed detection of biomarkers remains a challenge. Further, very few attempts have been made to integrate SiRi with complementary-metal-oxide-semiconductor (CMOS) circuits to form a complete lab-on-chip (LOC). Integration of SiRi with CMOS will facilitate real time detection of the output signal and provide a compact small sized LOC. Here, we propose a novel pixel based SiRi device monolithically integrated with CMOS ?eld-effect-transistors (FET) for real-time selective multiplexed detection. The SiRi pixels are fabricated on a silicon-on-insulator wafer using a top-down method. Each pixel houses a control FET, ?uid-gate (FG) and SiRi sensor. The pixel is controlled by simultaneously applying frontgate (VG) and backgate voltage (VBG). The liquid potential can be monitored using the FG. We report the transfer characteristics (ID-VG) of N- and P-type SiRi pixels. Further, the ID-VG characteristics of the SiRis are studied at different VBG. The application of VBG to turn ON the SiRi modulates the subthreshold slope (SS) and threshold voltage (VTH) of the control FET. Particularly, N-type pixels cannot be turned OFF due to the control NFET operating in the strong inversion regime. This is due to large VBG (≥25 V) application to turn ON the SiRi sensor. Conversely, the P-type SiRi sensors do not require large VBG to switch ON. Thus, P-type pixels exhibit excellent ION/IOFF ≥ 106, SS of 70–80 mV/dec and VTH of 0.5 V. These promising results will empower the large-scale cost-ef?cient production of SiRi based LOC sensors.

    关键词: silicon ribbon biosensor,SiRi backgate mode,silicon ribbon pixel,selective multiplexed detection,SiRi CMOS integration,SiRi frontgate mode,lab-on-chip

    更新于2025-09-23 15:22:29

  • Review—System-on-Chip SMO Gas Sensor Integration in Advanced CMOS Technology

    摘要: The growing demand for the integration of functionalities on a single device is peaking with the rise of IoT. We are near to having multiple sensors in portable and wearable technologies, made possible through integration of sensor fabrication with mature CMOS manufacturing. In this paper we address semiconductor metal oxide sensors, which have the potential to become a universal sensor since they can be used in many emerging applications. This review concentrates on the gas sensing capabilities of the sensor and summarizes achievements in modeling relevant materials and processes for these emerging devices. Recent advances in sensor fabrication and the modeling thereof are further discussed, followed by a description of the essential electro-thermal-mechanical analyses, employed to estimate the devices’ mechanical reliability. We further address advances made in understanding the sensing layer, which can be modeled similar to a transistor, where instead of a gate contact, the ionosorped gas ions create a surface potential, changing the film’s conduction. Due to the intricate nature of the porous sensing films and the reception-transduction mechanism, many added complexities must be addressed. The importance of a thorough understanding of the electro-thermal-mechanical problem and how it links to the operation of the sensing film is thereby highlighted.

    关键词: SMO gas sensors,CMOS integration,sensing mechanism,modeling,microheater design

    更新于2025-09-19 17:15:36

  • Laser crystallized low-loss polycrystalline silicon waveguides

    摘要: We report the fabrication of low-loss, low temperature deposited polysilicon waveguides via laser crystallization. The process involves pre-patterning amorphous silicon ?lms to con?ne the thermal energy during the crystallization phase, which helps to control the grain growth and reduce the heat transfer to the surrounding media, making it compatible with CMOS integration. Micro-Raman spectroscopy, Secco etching and X-ray di?raction measurements reveal the high crystalline quality of the processed waveguides with the formation of millimeter long crystal grains. Optical losses as low as 5.3 dB/cm have been measured, indicating their suitability for the development of high-density integrated circuits.

    关键词: CMOS integration,low-loss,laser crystallization,polysilicon waveguides,optical losses

    更新于2025-09-19 17:13:59

  • CuO Thin Films Functionalized with Gold Nanoparticles for Conductometric Carbon Dioxide Gas Sensing

    摘要: Metal oxides (MOx) are a well-established material for gas sensing. MOx-based gas sensors are sensitive to a wide variety of gases. Furthermore, these materials can be applied for the fabrication of low-cost and -power consumption devices in mass production. The market of carbon dioxide (CO2) gas sensors is mainly dominated by infra-red (IR)-based gas sensors. Only a few MOx materials show a sensitivity to CO2 and so far, none of these materials have been integrated on CMOS platforms suitable for mass production. In this work, we report a cupric oxide (CuO) thin film-based gas sensor functionalized with gold (Au) nanoparticles, which exhibits exceptional sensitivity to CO2. The CuO-based gas sensors are fabricated by electron beam lithography, thermal evaporation and lift-off process to form patterned copper (Cu) structures. These structures are thermally oxidized to form a continuous CuO film. Gold nanoparticles are drop-coated on the CuO thin films to enhance their sensitivity towards CO2. The CuO thin films fabricated by this method are already sensitive to CO2; however, the functionalization of the CuO film strongly increases the sensitivity of the base material. Compared to the pristine CuO thin film the Au functionalized CuO film shows at equal operation temperatures (300 ?C) an increase of sensitivity towards the same gas concentration (e.g., 2000 ppm CO2) by a factor of 13. The process flow used to fabricate Au functionalized CuO gas sensors can be applied on CMOS platforms in specific post processing steps.

    关键词: metal oxides,CMOS integration,CO2,gas sensors,CuO

    更新于2025-09-09 09:28:46