修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2018
研究主题
  • Carbon nanotubes
  • Magnetic focused
  • Field emission cathodes
  • Travelling wave tubes
  • Heat Trap
  • outgassing
  • lifetime
  • current stability
  • cathode
  • thermionic emission
应用领域
  • Electronic Science and Technology
  • Nanomaterials and Technology
机构单位
  • University of British Columbia
  • Beijing Vacuum Electronics Research Institute
  • Sun Yat-sen University
1143 条数据
?? 中文(中国)
  • Carbon Black and Titanium Interlayers Between Zinc Oxide Photo Electrode and Fluorine-Doped Tin Oxide for Dye-Sensitized Solar Cells

    摘要: Carbon black and titanium interlayers were deposited on ?uorine-doped tin oxide (FTO) anode layers using radio frequency magnetron sputtering method. On top of them, Zinc oxide (ZnO) photo anode layers were prepared using plasma enhanced chemical vapor deposition technique. ZnO high binding energy as well as good breakdown strength, cohesion, and stability used as a photo electrode material for dye-sensitized solar cells (DSSC), but it does not have a good electrical contact to the FTO anode. To solve this problem, the carbon black and titanium interlayers were deposited. The effect of interlayers on the power conversion ef?ciency (PCE) of DSSCs was investigated. The PCE of the devices with 120-nm-thick interlayers of carbon black or titanium was 5.21 or 4.45%, respectively, which were larger than the PCE of the devices without such interlayers (3.25%). The smooth interface of the carbon black interlayer reduced the interface impedance of the ZnO photo anode effectively. On the other hand, the titanium interlayer with TiO2 on the ZnO side increased the impedance, and decreased the PCE.

    关键词: Fluorine-Doped Tin Oxide,Titanium,Carbon Black,Dye-Sensitized Solar Cells

    更新于2025-11-14 17:04:02

  • Electron Transport Improvement of Perovskite Solar Cell via ZIF-8 Derived Porous Carbon Skeleton

    摘要: To improve electron transport rate of perovskite solar cell, ZIF-8 derived porous carbon skeleton layer is prepared by carbonizing the ZIF-8 thin film on conducting glass as the electron transport skeleton of perovskite solar cell. Polyvinyl pyrrolidone is added during the synthesis of ZIF-8 to reduce the particle size of ZIF-8 and decrease the carbonization temperature below 600°C. The porous structure of ZIF-8 is mainly reserved at the optimized carbonization temperature. Then TiO2 nanoparticles are deposited on the surface of porous carbon skeleton to form an electron transport layer of perovskite solar cell with the structure of FTO/ZIF-8 derived porous carbon layer/TiO2/Perovskite/Spiro-OMeTAD/Au. Due to the good conductivity of the ZIF-8 derived porous carbon skeleton, the photogenerated electron transport rate of perovskite solar cell is increased. At the same time, the porous structure of ZIF-8 derived carbon layer increases the contact area between the perovskite layer and the TiO2 layer to favor separation of photogenerated charges. Therefore, the light-to-electric conversion efficiency of CH3NH3PbI3 perovskite solar cell is enhanced from 14.25% to 17.32%.

    关键词: Electron transport,Increase of contact area,Porous carbon skeleton,Good conductivity,Polyvinyl pyrrolidone,Perovskite solar cell,Metal organic frameworks

    更新于2025-11-14 17:04:02

  • Facile and one-step preparation carbon quantum dots from biomass residue and their applications as efficient surfactants

    摘要: Using biomass residue as a source of carbon precursors, a pyrolysis method was used to prepare biomass-derived luminescent Carbon Quantum Dots (CQDs). The prepared CQDs exhibited excellent fluorescence and luminescence properties and fluorescence behaviors of CQDs acquired at different pyrolysis temperatures varied. Importantly, the CQDs showed superior surface activity and the styrene-in-water Pickering emulsion prepared using the CQDs as nano-sized surfactant was highly stable: the higher the pyrolysis temperature the better the stability of the emulsion. In addition, there was no stratification found in the emulsion which was stabilized by the CQD500 (CQDs prepared at 500 (cid:1)C) after holding for 72 hours. This research provided an approach for preparing the surfactants of nano-sized particles in large scale. The CQDs prepared using the proposed methods are expected to have a high number of potential applications.

    关键词: biomass,nano-sized surfactant,Carbon Quantum Dots,stability,pickering emulsion

    更新于2025-11-14 17:04:02

  • Facile microwave synthesis of carbon dots powder with enhanced solid-state fluorescence and its applications in rapid fingerprints detection and white-light-emitting diodes

    摘要: In this report, we successfully developed a simple and fast MW-assisted method for preparing CDs with strong solid-state fluorescence (SSF) by using phthalic acid and piperazine as precursors. The prepared p-CDs can be obtained in high yield (48.7%) and emit bright yellow-green SSF under 365 nm UV light. The absolute PL quantum yield (PLQY) of p-CDs in solid state was measured to be 20.5%, which is much higher than that in aqueous solution. This interesting phenomenon shows that p-CDs not only successfully conquer the aggregation-caused fluorescence quenching (ACQ) effect, but also achieve enhanced fluorescence emission, which was rarely reported in previous literatures as CDs in solid state always reduce their fluorescence emission due to the excessive resonance energy transfer (RET) or direct π-π interactions. In addition, the relationship between the feed ratio of precursors and optical properties of the CDs were also investigated detailedly. Based on their strong SSF, the p-CDs were successfully used in rapid latent fingerprints detection and white light-emitting diodes (WLEDs) preparation with high quality. In summary, this research not only developed a new type of CDs with strong enhanced SSF, but also offered a valuable reference for design SSF-emitting CDs with high yield.

    关键词: Carbon dots,Solid-state fluorescence,Light-emitting diodes,Latent fingerprints

    更新于2025-11-14 17:04:02

  • A simple method to synthesize low-cost carbon modified TiO <sub/>2</sub> counter electrodes for high-efficiency dye-sensitized solar cells

    摘要: Low cost and stable counter electrodes (CE) for dye-sensitized solar cells (DSSC) are promising for widespread use. In this paper, we report a simple and effective method to synthesize carbon modified TiO2 (TiO2/C) thin film as an abundant low cost CE for high-efficiency DSSC. The TiO2 paste layer contained organic compound was deposited on FTO glass substrate by a screen-printing method. When annealing the TiO2 paste layer at 450–550 °C under Ar flow, these organic compounds are decomposed to carbon to form carbon coated TiO2 nanoparticles. When used as a CE of DSSCs, the experimental results point out that the photoelectric conversion efficiency of DSSCs was obviously improved to near that of the referenced Pt CE. For TiO2/C is one of the cheapest and most stable materials, this TiO2/C can be used as a low cost CE for large scale high efficient DSSCs.

    关键词: carbon nano materials,solar energy materials,counter electrode,dye-sensitized solar cell

    更新于2025-11-14 17:04:02

  • Electrochemiluminescence sensing platform for ultrasensitive DNA analysis based on resonance energy transfer between graphitic carbon nitride quantum dots and gold nanoparticles

    摘要: Electrogenerated chemiluminescence (ECL) of semiconductor quantum dots (QDs) is considered as a powerful technique in the fabrication of biosensor, however, the inherent toxicity of the heavy metal ion containing in QDs limits their further applications. Thus, searching for environment-friendly luminescent nanomaterials with high electrochemiluminescence (ECL) e?ciency is an urgent goal. In this work, a solid-state method under low temperature was adopted to prepare graphitic carbon nitride quantum dots (g-CNQDs). By using coreactant K2S2O8, a strong cathodic ECL signal of g-CNQDs could be observed in phosphate bu?er. A novel ECL resonance energy transfer procedure was constructed between g-CNQDs (emitter) and gold nanoparticles (acceptor). A signal probe was formed by connecting gold nanoparticles at the hairpin DNA (Hai-DNA) terminal. When the signal probe was anchored on g-CNQDs, ECL resonance energy transfer occurred due to the ECL quenching of gold nanoparticles to g-CNQDs. This phenomenon decreased the ECL signal. In the presence of target DNA (T-DNA), the looped structure of Hai-DNA could be destroyed by T-DNA, and gold nanoparticles were separated from g-CNQDs. Accordingly, the ECL resonance energy transfer procedure was hindered, and the ECL signal was recovered again. The ECL intensities exhibited linear correlation with the logarithm of T-DNA concentration from 0.02 fM to 0.1 pM, and the limit of detection was 0.01 fM (3σ). With the developed ECL resonance energy transfer system, good selectivity and high sensitivity were achieved in T-DNA detection.

    关键词: Graphitic carbon nitride quantum dots,Electrochemiluminescence,DNA,Resonance energy transfer,Biosensor

    更新于2025-11-14 17:04:02

  • Effective synthesis of nanoscale anatase TiO <sub/>2</sub> single crystals using activated carbon template to enhance the photodegradation of crystal violet

    摘要: Nanoscale anatase TiO2 single crystals were successfully synthesized using three kinds of activated carbon (AC) templates through a simple sol–gel method. The optimal photocatalyst (T‐WOAC) was obtained using wood‐based AC template. X‐ray diffraction, transmission electron microscopy and Brunauer–Emmett–Teller analyses revealed that T‐WOAC possessed a small crystallite size of 8.7 nm and a clear mesoporous structure. The photocatalytic properties of samples were then evaluated through photodegradation of crystal violet (CV). Results implied that the photocatalysts prepared using the AC templates exhibited superior photocatalytic activity to that of the original TiO2. This enhancement may be due to the small crystallite size, large specific surface area and pore volume of the catalysts prepared with ACs. T‐WOAC showed high photocatalytic activity, CV degradation of 99.01% after 120 min of irradiation and k = 0.03914 min?1, which is 3.9 times higher than that of the original TiO2 (k = 0.00994 min?1). This result can be mainly attributed to the application of WOAC with moderate specific surface area and pore volume to produce T‐WOAC. Alkaline conditions benefitted the photodegradation of CV over photocatalysts. This work proposes a possible degradation mechanism of CV and indicates that the fabricated photocatalysts can be used to effectively remove CV from aqueous solutions.

    关键词: photocatalyst,anatase TiO2 single crystals,sol–gel,crystal violet,activated carbon

    更新于2025-11-14 17:04:02

  • Development of a fluorescence immunoassay for highly sensitive detection of amantadine using the nanoassembly of carbon dots and MnO2 nanosheets as the signal probe

    摘要: Fluorescence immunoassays are rapid, convenient and cost-effective for the sensitive quantitation of chemical contaminants in foodstuff. In this study, a competitive fluorescence ELISA was developed for the sensitive detection of amantadine (AMD) based on the alkaline phosphatase (ALP)-triggered fluorescence "turn-on" signals. As a fluorescence substrate, carbon dots (CDs) were adsorbed onto the surface of the MnO2 nanosheets (NSs) and formed a nanoassembly of p-CDs@MnO2 NSs which results in the fluorescence quench of CDs. The ALP labelled on antibody could catalyze the hydrolysis of the 2-phospho-L-ascorbic acid into ascorbic acid. The latter could then reduce and decompose the MnO2 NSs, which was accompanied by the release of CDs from the surface of MnO2 NSs and led to the fluorescence recovery of CDs. The change of the fluorescence intensity is related to the concentration of AMD in solution and thus could be applied to detect AMD in an ALP-based ELISA system. The fluorescent ELISA showed a linear detection for AMD in the range of 0.048 ng mL?1 to 1.1 ng mL?1 with a detection limit (LOD) of 0.035 ng mL?1. The novel fluorescent ELISA shows potential for the highly sensitive detection of AMD and other analytes in food analysis.

    关键词: manganese dioxide nanosheets,carbon dots,fluorescent immunoassay,amantadine

    更新于2025-11-14 17:04:02

  • A spark discharge generator for scalable aerosol CVD synthesis of single-walled carbon nanotubes with tailored characteristics

    摘要: We have designed and built an exhaust-free spark discharge generator for robust aerosol CVD synthesis of single-walled carbon nanotubes. The systematic study has shown the generator to provide a facile and repeatable route to precisely control the size of the catalyst particle and, therefore, carbon nanotube growth. Using a comprehensive set of methods (the analysis of differential mobility of the aerosol particles, optical spectroscopy, scanning and transmission electron microscopy, Raman spectroscopy, and atomic force microscopy) we have revealed the relation between the defectiveness, length, diameter distribution of carbon nanotubes and specific features of a generator such as electrode characteristics (breakdown voltage, composition, and current) as well as the nature of the surrounding media (carrier gas nature, flow rate). The design used has resulted in separation of the nanoparticle formation and carbon nanotube nucleation processes. This provides a mutual independence of the growth parameters and the diameter distribution of the single-walled carbon nanotubes enhancing the scalability of the process. For instance, the breakdown voltage has been shown to have nearly zero effect on diameter and length distribution of carbon nanotubes produced while strictly governing the yield. We focus here on producing specifically short carbon nanotubes (l < 500nm) of pronounced defectiveness for drug delivery and transistor applications.

    关键词: single-walled carbon nanotubes,differential mobility analyzer,catalyst activation,spark-discharge generator,aerosol CVD,floating bed reactor

    更新于2025-11-14 17:03:37

  • In-Situ Synthesis of Nb2O5/g-C3N4 Heterostructures as Highly Efficient Photocatalysts for Molecular H2 Evolution under Solar Illumination

    摘要: This work focuses on the synthesis of heterostructures with compatible band positions and a favourable surface area for the efficient photocatalytic production of molecular hydrogen (H2). In particular, 3‐dimensional Nb2O5/g‐C3N4 heterostructures with suitable band positions and high surface area have been synthesized employing a hydrothermal method. The combination of a Nb2O5 with a low charge carrier recombination rate and a g‐C3N4 exhibiting high visible light absorption resulted in remarkable photocatalytic activity under simulated solar irradiation in the presence of various hole scavengers (triethanolamine (TEOA) and methanol). The following aspects of the novel material have been studied systematically: the influence of different molar ratios of Nb2O5 to g‐C3N4 on the heterostructure properties, the role of the employed hole scavengers, and the impact of the co‐catalyst and the charge carrier densities affecting the band alignment. The separation/transfer efficiency of the photogenerated electron‐hole pairs is found to increase significantly as compared to that of pure Nb2O5 and g‐C3N4, respectively, with the highest molecular H2 production of 110 mmol/g·h being obtained for 10 wt % of g‐C3N4 over Nb2O5 as compared with that of g‐C3N4 (33.46 mmol/g·h) and Nb2O5 (41.20 mmol/g·h). This enhanced photocatalytic activity is attributed to a sufficient interfacial interaction thus favouring the fast photogeneration of electron‐hole pairs at the Nb2O5/g‐C3N4 interface through a direct Z‐scheme.

    关键词: Z‐Scheme,H2 evolution,hydrothermal synthesis,graphitic carbon nitride,photocatalysis,heterostructures,Niobium(V) oxide

    更新于2025-11-14 17:03:37