- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Carbon Nanotube-Supported Cu <sub/>3</sub> P as High-Efficiency and Low-Cost Cocatalysts for Exceptional Semiconductor-Free Photocatalytic H <sub/>2</sub> Evolution
摘要: Developing an inexpensive and high-efficiency hydrogen-production cocatalyst to replace the noble metal Pt remains a big challenge in the fields of sustainable photocatalytic hydrogen evolution. Herein, we report the exploration of a high-efficient binary noble metal free Cu3P-CNT H2-evolution cocatalyst by direct high-temperature phosphatizing of Cu(OH)2-CNT. Impressively, combining the advantages of noble metal free Cu3P and carbon nanotube (CNT), the binary Cu3P-CNT cocatalysts show high-efficient photocatalytic H2 evolution in Eosin Y(EY)-contained semiconductor-free photocatalytic systems. The maximum visible-light H2-generation rate for promising EY-Cu3P-CNT systems was 17.22 mmolg-1h-1. The highest apparent quantum efficiency (AQE) could reach 10.23% at 500 nm. More importantly, we found that the separation of photogenerated electrons and holes in the Eosin Y, the efficiency of electron transfer from EY to the active edge sites of Cu3P, and the electrocatalytic H2-evolution activity of Cu3P, could be simultaneously boosted via readily adding the conductive CNT, thus achieving the significantly improved photocatalytic H2 evolution. This work provides a simple and facile strategy to design highly efficient semiconductor-free photocatalytic proton-reduction systems using high-activity transition metal phosphides (TMPs) and inexpensive carbon nanomaterials.
关键词: Photocatalytic Hydrogen Evolution,noble metal-free Cu3P Co-catalysts,Solar Fuel,Carbon nanotube (CNT),Dye sensitization
更新于2025-09-23 15:23:52
-
Impact paint sensor based on polymer/multi-dimension carbon nano isotopes composites
摘要: We presented a novel impact paint sensor made of piezoresistive nano-carbon composites and studied its characteristics. The paint sensors were fabricated with multi-walled carbon nanotube (MWCNT), exfoliated graphite nano-platelets (xGnP), and a hybrid type of the two nano-carbon fillers and were sprayed onto a carbon fiber reinforced plastic (CFRP) panel for lab testing. In ball drop impact test, the MWCNT-xGnP-based hybrid sensor showed the best characteristics in impact energy sensing within the range 0.07-1.0J. We also studied the piezoresistive mechanism due to dimensional variations of nano carbon isotopes for sensor design. Piezorestivity of nano-carbon sensor was significantly dominated the electrical contact variation of the electrical fillers in a matrix. This study is expected to provide a feasibility test for designing impact paint sensors with optimized sensitivity for a composite structural health monitoring (SHM).
关键词: Carbon nanotube (CNT),Exfoliated graphite nanoplate (xGnP),Structural health monitoring (SHM),Unmanned aerial vehicle (UAV),Impact paint sensor
更新于2025-09-23 15:22:29
-
[IEEE 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Kyoto, Japan (2018.7.9-2018.7.13)] 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - High-frequency photocathode based on CNT-yarn emitter and GaAs photoswitch
摘要: A high frequency photocathode based on a carbon nanotube (CNT)-yarn in series to a semi-insulating (s.i.) GaAs was fabricated and used for field electron emission in a diode configuration. This hybrid two-chip technology allows the separate optimization of the yarn emitter and the photoswitch. This concept can overcome the capacitance limitations of miniaturized high-frequency vacuum tubes. The used CNT yarn emitter with 20 μm diameter had a threshold electric fields of ~1.8 V/μm (defined at 1mA/cm2) with a stable field emitter current up to 400 μA. The high-voltage photomodulation was up to 100 MHz.
关键词: carbon nanotube,CNT yarn,photocathode,semi-insulating GaAs
更新于2025-09-23 15:21:21
-
[IEEE 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Kyoto, Japan (2018.7.9-2018.7.13)] 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - High-performance carbon nanotube paste emitters by using the optimal size distribution of SiC nanometer-fillers aggregates
摘要: We improved carbon nanotube (CNT) paste field emitter by optimizing the size distribution of SiC aggregates as inorganic fillers using a novel milling process. The average size of SiC aggregates was reduced to sub-micrometer with a relatively narrow distribution. The CNT paste emitter with the optimized small SiC fillers of 1 μm in D50, by the milling process, exhibited better adhesive property and more uniform surface morphology than that with large fillers from the as-purchased SiC. Furthermore, the optimized small fillers shows superior field emission performance even under a high current density, making the CNT paste technology very useful for a variety of field emission devices.
关键词: milling process,Field emission,Carbon nanotube (CNT),paste formulation,SiC
更新于2025-09-23 15:21:21
-
Improving CNT-Si solar cells by metal chloride-to-oxide transformation
摘要: Transitional metal oxides (TMOs) are important functional materials in silicon-based and thin-film optoelectronics. Here, TMOs are applied in carbon nanotube (CNT)-Si solar cells by spin-coating solutions of metal chlorides that undergo favorable transformation in ambient conditions. An unconventional change in solar cell behavior is observed after coating two particular chlorides (MoCl5 and WCl6, respectively), characterized by an initial severe degradation followed by gradual recovery and then well surpassing the original performance. Detailed analysis reveals that the formation of corresponding oxides (MoO3 and WO3) enables two primary functions on both CNTs (p-type doping) and Si (inducing inversion layer), leading to significant improvement in open-circuit voltage and fill factor, with power conversion efficiencies up to 13.0% (MoO3) and 13.4% (WO3). Further combining with other chlorides to increase the short-circuit current, ultimate cells efficiencies achieve >16% with over 90% retention after 24 h, which are among the highest stable efficiencies reported for CNT-Si solar cells. The transformation of functional layers as demonstrated here has profound influence on the device characteristics, and represents a potential strategy in low-cost manufacturing of next-generation high efficiency photovoltaics.
关键词: carbon nanotube (CNT)-Si solar cell,inversion layer,chloride to oxide transformation,MoO3 and WO3
更新于2025-09-23 15:19:57
-
Electronic transport through defective semiconducting carbon nanotubes
摘要: We investigate the electronic transport properties of semiconducting (m, n) carbon nanotubes (CNTs) on the mesoscopic length scale with arbitrarily distributed realistic defects. The study is done by performing quantum transport calculations based on recursive Green’s function techniques and an underlying density-functional-based tight-binding model for the description of the electronic structure. Zigzag CNTs as well as chiral CNTs of different diameter are considered. Different defects are exemplarily represented by monovacancies and divacancies. We show the energy-dependent transmission and the temperature-dependent conductance as a function of the number of defects. In the limit of many defetcs, the transport is described by strong localization. Corresponding localization lengths are calculated (energy dependent and temperature dependent) and systematically compared for a large number of CNTs. It is shown, that a distinction by (m ? n)mod 3 has to be drawn in order to classify CNTs with different bandgaps. Besides this, the localization length for a given defect probability per unit cell depends linearly on the CNT diameter, but not on the CNT chirality. Finally, elastic mean free paths in the diffusive regime are computed for the limit of few defects, yielding qualitatively same statements.
关键词: defect,electronic transport,density-functional-based tight binding (DFTB),Carbon nanotube (CNT),recursive Green?s function formalism (RGF),strong localization,elastic mean free path
更新于2025-09-19 17:15:36
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Modeling Methodology for Determining Energy Collection Potential of Photovoltaics Applied To Curved Surfaces
摘要: Arrays of periodic one-dimensional nanomaterials offer tunable optical properties in terms of light–matter interaction which are attractive for designing efficient optoelectronic devices. This paper presents a fabrication of bottom-up grown nanopillar (NP) array solar cells based on n-i-p thin-film amorphous silicon using scaffolds of vertically aligned carbon nanotube (CNT) array. The effects of varying the CNT spacing over the range from 800 to 2000 nm on optical and electrical properties of the solar cells were investigated. The NP solar cell with CNT spacing of 800 nm exhibited ‘moth-eye’ broadband antireflection behavior, showing an average reflectance value lower than 10%. The enhanced optical absorption translated to significant enhancements in photocurrent and quantum efficiency compared to a conventional planar solar cell under low light condition. The open-circuit voltage (Voc) of the NP solar cell was found systematically correlated with the CNT spacing and the illumination condition. The results presented here is of importance for developing high efficiency one-dimensional nanostructured solar cells.
关键词: photovoltaic cells,nanostructured materials,nanophotonics,Amorphous silicon,carbon nanotube (CNT)
更新于2025-09-16 10:30:52
-
Printing Carbon Nanotube-embedded Silicone Elastomers via Direct Writing
摘要: Direct writing techniques for the printing of colloidal multiwalled carbon nanotubes (CNTs) embedded in polydimethylsiloxane (PDMS) were developed herein to fabricate complex structures including woodpiles, tetragonal scaffolds, and gradient mesh structures. The multiwalled CNTs served as a conductive filler and thickening agent for the printing ink. A suitable rheological behavior was obtained by mixing the CNTs with PDMS dissolved in an isopropyl alcohol solvent. A 7 wt.% CNT loading in the PDMS was optimum for printing gap-spanning features at a nozzle speed of 20 mm/s. The printed structures, including a woodpile and gradient mesh structure, were capable of detecting changes in external mechanical pressure. Printed CNT/PDMS strips exhibit electrical actuation with good mechanical performance (strain of 8.9%) at a low actuation voltage (60 V). The performance characterization and application display demonstrated the possibility of developing custom complex CNT/PDMS structures for a broad range of applications, including soft robots and flexible electronic devices.
关键词: polydimethylsiloxane,gap spanning features,multiwalled carbon nanotube (CNT),Direct writing,rheological behavior
更新于2025-09-10 09:29:36