- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
How the Mixed Cations (Guanidium, Formamidinium, and Phenylethylamine) in Tin Iodide Perovskites Affect Their Charge Carrier Dynamics and Solar Cell Characteristics
摘要: Despite recent interest in lead-free Sn iodide perovskite (ASnI3) solar cells, the role of mixed A-site cations is yet to be fully understood. Here, we report the effect of the ternary mixing of organic A-site cations (guanidium, GA; formamidinium, FA; and phenylethylamine, PEA) on the solar cell performance and charge carrier dynamics that are evaluated using time-resolved microwave conductivity (TRMC). (GAxFA1?x)0.9PEA0.1SnI3 exhibits the maximum power conversion efficiency (PCE) of 7.90% at x = 0.15 and a drastic decrease with increasing GA content. Notably, our TRMC measurements of ASnI3 with/without a hole transport layer reveal the same trend with the devices. From the analyses, we suggest that a variation of electron mobility affected by the location of the GA cation in the grains significantly impacts the PCE. Our work sheds light on the role of mixed A-site cations and directs a route toward the further development of Sn perovskite solar cells.
关键词: time-resolved microwave conductivity,mixed A-site cations,solar cell performance,Sn iodide perovskite,charge carrier dynamics,lead-free
更新于2025-09-23 15:21:01
-
Effects of Size and Localized States in Charge Carrier Dynamics and Performance of Solution Processed Graphene Quantum Dots/Silicon Heterojunction near-UV Photodetectors
摘要: Influence of size and localized defect states on photogenerated carrier recombination dynamics, which affects the performance of graphene quantum dots (GQDs) based Si-compatible near-UV heterojunction photodetectors, is reported. GQDs of varying size from ~3.0 to ~8.0 nm have been prepared by a top down method of oxidative cutting of graphene oxide followed by hydrothermal reduction and gradient centrifugation at different speeds. Structural, compositional, photophysical characteristics and photocarrier dynamics of different sized samples have been studied. Spectroscopic features and carrier dynamics of GQDs are effectively controlled by their size and localized surface states, which also determine the average recombination lifetime of photo-generated carriers. Two-terminal vertical heterojunction photodetector devices fabricated using solution processed quantum dots exhibit superior performance over a broad spectrum with a peak response in the near UV (380 nm) region. The device fabricated using ~6.0 nm diameter GQDs displayed highest peak responsivity of 3.5 A/W showing an interesting correlation with carrier dynamics. To our best knowledge, this is the only report in graphene quantum dots or carbon nanostructure genre, showing the direct correlation between size of the quantum dots and localized surface states on photocarrier dynamics and consequential performance of photodetector devices.
关键词: Graphene quantum dots,carrier dynamics,heterojunction,Si-compatible,near-UV photodetectors
更新于2025-09-23 15:21:01
-
Bis(4-methylthio)phenyl)amine-based hole transport materials for highly-efficient perovskite solar cells: insight into the carrier ultrafast dynamics and interfacial transport
摘要: Hole transport layers (HTLs) play a significant role in the performance of perovskite solar cells. A new class of linear small-molecules based on bis(4-methylthio)phenyl)amine as an end group, carbon, oxygen and sulfur as the center atoms for the center unit (denoted as MT-based small-molecule), respectively, have been applied as HTL, and two of them presented the efficiency over 20% in the planar inverted perovskite solar cells (PSCs), which demonstrated a significant improvement in comparison with the widely used HTL, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (known as PEDOT:PSS), in the planar inverted architecture. The ultrafast carrier dynamics show that the excited hot carrier cooling process of MT-based small-molecule HTL samples is faster than that of PEDOT:PSS samples. The kinetic analysis of photo-bleaching peaks of femtosecond transient absorption spectra reveals that the traps at the interface between MT-based small-molecule HTLs and MAPbI3 can be filled much quicker than that at PEDOT/MAPbI3 interfaces. Moreover, the hole injection time from MAPbI3 to MT-based small-molecule HTLs is around 10 times quicker than that to PEDOT:PSS. Such quick trap filling and hole extraction bring a significant enhancement in photovoltaic performances. These findings uncover the carrier transport mechanisms and illuminate a promising approach for the design of new HTLs for highly-efficient perovskite solar cells.
关键词: hole transport layer,perovskite solar cell,ultrafast carrier dynamics
更新于2025-09-23 15:21:01
-
Gradient Formation and Charge Carrier Dynamics of CuBiI4 based Perovskite-like Solar Cells
摘要: Designing lead-free inorganic perovskite or perovskite-like structure materials and researching the corresponding photoinduced charge carrier dynamics are always promising due to both the environment and power conversion efficiency considerations. In this work, we intelligently employ bilayer metal Bi/Cu thin film with different atomic ratios as precursor to in-situ fabricate CuBiI4 perovskite-like film with controlled Bi gradient at room temperature. This structure can significantly affect the photoinduced charge carrier dynamic of the resulting products. Next, a series of transient surface photovoltage (TSPV) measurements have been carried out to investigate the photoinduced charge carrier dynamics of such CuBiI4 and CuBiI4: organic hybrid thin films. It reveals that the gradually decreased Bi content from ITO to CuBiI4 can help the photoinduced charge carrier transportation. Finally, a champion PCE of 1.10% has been obtained from an ITO/ CuBiI4: polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7)/ Au solar cell device. In particular, we find an exact negative correlation of the defined parameter L (the defined value for evaluating the photoinduced charge carrier dynamic in TSPV measurements) with the corresponding PCE of various devices for the first time, which may pave a new way for evaluating the potential photoelectric and photovoltaic performances of new materials without assembly of solar cell devices.
关键词: CuBiI4,solar cell,photoinduced charge carrier dynamics,lead-free inorganic perovskite,transient surface photovoltage
更新于2025-09-23 15:19:57
-
Tailoring Carrier Dynamics in Perovskite Solar Cells via Precise Di-mension and Architecture Control and Interfacial Positioning of Plasmonic Nanoparticles
摘要: Placing plasmonic nanoparticles (NPs) in close proximity to semiconductor nanostructures renders effective tuning of the optoelectronic properties of semiconductors through the localized surface plasmon resonance (LSPR)-induced enhancement of light absorption and/or promotion of carrier transport. Herein, we report on, for the first time, the scrutiny of carrier dynamics of perovskite solar cells (PSCs) via sandwiching monodisperse plasmonic/dielectric core/shell NPs with systematically varied dielectric shell thickness yet fixed plasmonic core diameter within electron transport layer (ETL). Specifically, a set of Au NPs with precisely controlled dimensions (i.e., fixed Au core diameter and tunable SiO2 shell thickness) and architectures (plain Au NPs and plasmonic/dielectric Au/SiO2 core/shell NPs) are first crafted by capitalizing on the star-like block copolymer nanoreactor strategy. Subsequently, these monodisperse NPs are sandwiched between the two consecutive TiO2 ETLs. Intriguingly, there exists a critical dielectric SiO2 shell thickness, below which hot electrons from Au core are readily injected to TiO2 (i.e., hot electron transfer (HET)); this promotes local electron mobility in TiO2 ETL, leading to improved charge transport and increased short-circuit current density (Jsc). It is also notable that the HET effect moves up the Fermi level of TiO2, resulting in an enhanced built-in potential and open-circuit voltage (Voc). Taken together, the PSCs constructed by employing a sandwich-like TiO2/Au NPs/TiO2 ETL exhibit both greatly enhanced Jsc and Voc, delivering champion PCEs of 18.81% and 19.42% in planar and mesostructured PSCs, respectively. As such, the judicious positioning of rationally designed monodisperse plasmonic NPs in ETL affords effective tailoring of carrier dynamics, thereby providing a unique platform for developing high-performance PSCs.
关键词: hot electron transfer,perovskite solar cells,plasmonic nanoparticles,carrier dynamics,localized surface plasmon resonance
更新于2025-09-23 15:19:57
-
Grain Boundaries Limit the Charge Carrier Transport in Pulsed Laser Deposited ?±-SnWO <sub/>4</sub> Thin Film Photoabsorbers
摘要: Recently, α-SnWO4 attracted attention as a material to be used as a top absorber in a tandem device for photoelectrochemical water splitting due to its nearly optimum bandgap of ~1.9?eV and an early photocurrent onset potential of ~0 V vs. RHE. However, the mismatch between the charge carrier diffusion length and light penetration depth—which is typical for metal oxide semiconductors—currently hinders the realization of high photoconversion efficiencies. In this work, the pulsed laser deposition process and annealing treatment of α-SnWO4 thin films are elucidated in order to optimize their charge carrier transport properties. A high temperature treatment is found to enhance the photoconductivity of α-SnWO4 by more than one order of magnitude, as measured with time-resolved microwave conductivity (TRMC). A complimentary analysis by time-resolved terahertz spectroscopy (TRTS) shows that this improvement can be assigned to an increase of the grain size in the heat-treated films. In addition, TRTS reveals electron-hole charge carrier mobilities of up to 0.13 cm2 V-1s-1 in α-SnWO4. This is comparable to values found for BiVO4, which is one of the best performing metal oxide photoanode materials to date. These findings show that there is a significant potential for further improving the properties of α-SnWO4 photoanodes.
关键词: α-SnWO4,metal oxide photoelectrodes,grain boundaries,charge carrier dynamics,pulsed laser deposition
更新于2025-09-23 15:19:57
-
Thermal and efficiency droop in InGaN/GaN light-emitting diodes: decoupling multiphysics effects using temperature-dependent RF measurements
摘要: Multiphysics processes such as recombination dynamics in the active region, carrier injection and transport, and internal heating may contribute to thermal and efficiency droop in InGaN/GaN light-emitting diodes (LEDs). However, an unambiguous methodology and characterization technique to decouple these processes under electrical injection and determine their individual roles in droop phenomena is lacking. In this work, we investigate thermal and efficiency droop in electrically injected single-quantum-well InGaN/GaN LEDs by decoupling the inherent radiative efficiency, injection efficiency, carrier transport, and thermal effects using a comprehensive rate equation approach and a temperature-dependent pulsed-RF measurement technique. Determination of the inherent recombination rates in the quantum well confirms efficiency droop at high current densities is caused by a combination of strong non-radiative recombination (with temperature dependence consistent with indirect Auger) and saturation of the radiative rate. The overall reduction of efficiency at elevated temperatures (thermal droop) results from carriers shifting from the radiative process to the non-radiative processes. The rate equation approach and temperature-dependent pulsed-RF measurement technique unambiguously gives access to the true recombination dynamics in the QW and is a useful methodology to study efficiency issues in III-nitride LEDs.
关键词: InGaN/GaN light-emitting diodes,carrier dynamics,efficiency droop,pulsed-RF measurement,thermal droop
更新于2025-09-23 15:19:57
-
A self-powered photodetector based on two-dimensional boron nanosheets
摘要: Owing to their intriguing characteristics, the ongoing pursuit of emerging mono-elemental two-dimensional (2D) nanosheets beyond graphene is an exciting research area for next-generation applications. Herein, we demonstrate that highly crystalline 2D boron (B) nanosheets can be efficiently synthesized by employing a modified liquid phase exfoliation method. Moreover, carrier dynamics has been systematically investigated by using femtosecond time-resolved transient absorption spectroscopy, demonstrating an ultrafast recovery speed during carrier transfer. Based on these results, the optoelectronic performance of the as-synthesized 2D B nanosheets has been investigated by applying them in photoelectrochemical (PEC)-type and field effect transistor (FET)-type photodetectors. The experimental results revealed that the as-fabricated PEC device not only exhibited a favourable self-powered capability, but also a high photoresponsivity of 2.9–91.7 μA W?1 in the UV region. Besides, the FET device also exhibited a tunable photoresponsivity in the range of 174–281.3 μA W?1 under the irradiation of excited light at 405 nm. We strongly believe that the current work shall pave the path for successful utilization of 2D B nanosheets in electronic and optoelectronic devices. Moreover, the proposed method can be utilized to explore other mono-elemental 2D nanomaterials.
关键词: two-dimensional boron nanosheets,optoelectronic devices,carrier dynamics,liquid phase exfoliation,photodetector
更新于2025-09-23 15:19:57
-
Investigating ultrafast carrier dynamics in perovskite solar cells with an extended ??-conjugated polymeric diketopyrrolopyrrole layer for hole transportation
摘要: Here, we show a new diketopyrrole based polymeric hole-transport material (PBDTP-DTDPP, (poly[[2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl]-alt-[[2,20-(4,8-bis(4-ethylhexyl-1-phenyl)-benzo[1,2-b:4,5-b0]dithiophene)bis-thieno[3,2-b]thiophen]-5,50-diyl]])) in perovskite solar cells. The material performance was tested in a solar cell with an optimized configuration, FTO/SnO2/perovskite/PBDTP-DTDPP/Au, and the device showed a power conversion efficiency of 14.78%. The device charge carrier dynamics were investigated using transient absorption spectroscopy. The charge separation and recombination kinetics were determined in a device with PBDTP-DTDPP and the obtained results were compared to a reference device. We find that PBDTP-DTDPP enables similar charge separation time (<4.8 ps) to the spiro-OMeTAD but the amount of nongeminate recombination is different. Specifically, we find that the polymeric PBDTP-DTDPP hole-transport layer (HTL) slows-down the second-order recombination much less than spiro-OMeTAD. This effect is of particular importance in studying the charge transportation in optimized solar cell devices with diketopyrrole based HTL materials.
关键词: perovskite solar cells,transient absorption spectroscopy,PBDTP-DTDPP,charge carrier dynamics,hole-transport material
更新于2025-09-23 15:19:57
-
Ultrafast Charge Carrier Dynamics and Nonlinear Optical Absorption of InP/ZnS Core-Shell Colloidal Quantum Dots
摘要: Understanding of ultrafast carrier dynamics in InP/ZnS colloidal quantum dots (QDs) is essential for their optoelectronic applications. In this paper, we have successfully fabricated high-quality InP/ZnS core-shell QDs with quantum yield (QY) of 47%. Time resolved photoluminescence (TRPL), femtosecond transient absorption (TAS) measurements were performed to characterize the carrier injection, relax and transition process in the InP/ZnS QDs. It is found that the photoexcited carrier first injected to ZnS shell in 2 ps, then relaxed to alloyed layer between ZnS shell and InP core in 7.4 ps, next relaxed to different energy levels in InP core in about 170 ps, finally recombined by charged and neutral excitons transition in 4.1 ns and 26.7 ns, respectively. Additionally, the two-photon absorption (TPA) coefficient obtained from Z-scan measurement indicates that InP/ZnS QDs possess good nonlinearly optical properties. Our research is significant for the improvement and engineering of InP/ZnS QDs based materials for optoelectronic applications.
关键词: quantum dots,InP/ZnS,ultrafast carrier dynamics,nonlinear optical absorption,optoelectronic applications
更新于2025-09-19 17:13:59