修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

193 条数据
?? 中文(中国)
  • Enhanced Photocatalytic degradation of methylene blue dye using CuS-CdS nanocomposite under visible light irradiation

    摘要: The inorganic nanoparticles based semiconductor photocatalyst has attracted widespread attention for the practical applications in sustainable energy and environmental remediation due to its low cost, eco-friendly, high efficiency and ease of process. CuS, CdS and CuS-CdS nanocomposite photocatalysts have been successfully synthesized by a simple hydrothermal approach. The phase purity, composition and surface morphology of as synthesized nanomaterials were characterized using various analytical techniques. The photocatalytic activities of the as-prepared materials have been evaluated by the degradation of methylene blue (MB) dye in the presence of hydrogen peroxide (H2O2) which served as an oxidant under visible light irradiation. MB dye (10 ppm) was degraded by about 80%, 59% and 99.97% for CuS, CdS and CuS-CdS nanocomposite respectively at 10 min. The results demonstrate that CuS-CdS nanocomposite exhibited excellent photocatalytic activity as compared to the CuS and CdS is which mainly attributed to large surface area, narrow band gap, high adsorbing capacity of the dye and also low recombination of the photo-generated electrons and holes. Further, electrochemical impedance (EI) measurement revealed that as prepared CuS-CdS nanocomposite suggested that as compared to CuS and CdS, the CuS-CdS nanocomposite exhibits rapid migration of photo-induced charge carriers. In addition, the CuS-CdS nanocomposite demonstrated that good stability towards photocatalytic degradation even after repeated usage. Finally, a suitable photocatalytic reaction mechanism has been proposed to indicate the photocatalytic performance of the nanocomposite.

    关键词: Methylene blue dyes,hydrogen peroxide,CuS-CdS,photocatalytic activity.,charge carrier

    更新于2025-09-04 15:30:14

  • Exploration of charge carrier delocalization in the iron oxide/CdS type-II heterojunction band alignment for enhanced solar-driven photocatalytic and antibacterial applications

    摘要: Recyclable magnetic photocatalysts of iron oxide (IO)/CdS core/shell nanocrystals (CSNCs) were prepared by a facile sequential one-pot method using 3, 3'-thiobispropanoic acid (TDP) as a bridge. The CSNCs showed redshift in absorption edge, decrease in the optical band gap, reduced exciton decay rates and increment in particle size. Quenching studies have been employed to understand the position of the electron/hole wave-functions at the IO/CdS interface. Antimicrobial tests have also been performed using broth tube dilution and disc diffusion methods against S. aureus. Additionally, photocatalytic properties of IO/CdS CSNCs have been evaluated for the decomposition of xylenol blue. In comparison with CdS quantum dots (QDs) and iron oxide nanoparticles (IONPs), the IO/CdS CSNCs showed improved photocatalytic and bactericidal activities. Finally, levels of oxidative damage to proteins and lipids were evaluated.

    关键词: Photocatalysis,Wave-function engineering,Advanced oxidation process,Iron oxide/CdS nanocrystals,Photocatalytic bacterial inactivation

    更新于2025-09-04 15:30:14

  • TiO2 Nanowires-Supported Sulfides Hybrid Photocatalysts for Durable Solar Hydrogen Production

    摘要: As the feet of clay, photocorrosion induced by hole accumulation has placed serious limitations on the widespread deployment of sulfides nanostructures for photoelectrochemical (PEC) water splitting. Developing sufficiently stable electrodes to construct durable PEC systems is therefore the key to the realization of solar hydrogen production. Here, an innovative charge transfer manipulation concept based on the aligned hole transport across the interface has been realized to enhance the photostability of In2S3 electrodes toward PEC solar hydrogen production. The concept was realized by conducting compact deposition of In2S3 nanocrystals on the TiO2 nanowires array. Under PEC operation, the supporting TiO2 nanowires functioned as an anisotropic charge transfer backbone to arouse aligned charge transport across the TiO2/In2S3 interface. Because of the aligned hole transport, the TiO2 nanowires-supported In2S3 hybrid nanostructures (TiO2-In2S3) exhibited improved hole transfer dynamics at the TiO2/In2S3 interface and enhanced hole injection kinetics at the electrode surface, substantially increasing the long-term photostability toward solar hydrogen production. The PEC durability tests showed that TiO2-In2S3 electrodes can achieve nearly 90.9 % retention of initial photocurrent upon continuous irradiation for 6 h, whereas the pure In2S3 merely retained 20.8 % of initial photocurrent. This double-gain charge transfer manipulation concept is expected to convey a viable approach to the intelligent design of highly efficient and sufficiently stable sulfides photocatalysts for sustainable solar fuel generation.

    关键词: In2S3,interfacial charge dynamics,CdS,photocorrosion,solar hydrogen production

    更新于2025-09-04 15:30:14