修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Cesium lead halide perovskite nanocrystals for ultraviolet and blue light blocking

    摘要: Direct exposure to ultraviolet (UV) light is closely related to various harmful effects [1-3], ranging from skin injures to cancer originated from DNA damage. Recent years, some studies reported that blue light are also detrimental to humans [4,5], for example, the blue light could cause photochemical lesions to human retinal within the intensity range of the natural light [6]. Furthermore, blue light is responsible for the solar retinitis and may play a role in age-related macular degeneration. Importantly, the harmful effects of blue lights generated from the electronic display devices should also be careful [7]. Thus, the development of new UV and blue light shielding materials has been received much attention [8]. In the past few years, there has been an increased awareness of the importance to develop UV shielding materials. A variety of materials have been used to prevent UV lesions. Organic molecules like avobenzone or oxybenzone have been used as a UV absorber for many years, but the self-degradation limits their usage time. Inorganic materials such as zinc oxide (ZnO) and titanium oxide (TiO2) have been used intensively for UV shielding [9-12]. However, photocatalytic properties and self-degradations of the ZnO and TiO2 based absorbers also hindered their applications [13,14]. Other materials, e.g., graphene oxide-poly(vinyl alcohol) composite film and lanthanide complex functionalized cellulose nanopaper were also reported for UV shielding [15,16]. Whereas, the excellent UV-filtering capability of these films was obtained by sacrificing the visible light transmittance. Therefore, fabricating UV and blue light blocking materials with good photostability and high transparency to the rest of visible light still remains a challenge and is urgently needed to be developed. Recently, because of the outstanding performance in photovoltaic applications, lead halide perovskite APbX3 (where A = CH3NH3+, (NH2)2CH+ and Cs+, X = Cl?, Br? and I?) has become the most noticeable materials [17-22]. These perovskite nanocrystals exhibit intriguing features [23], such as easy tunable band gap, sharp optical absorption edges and high quantum efficiency with narrow emission spectra. These nanocrystals have been studied extensively for various optical applications, especially light emitting diodes and lasers [24-27]. Post modification of perovskite nanocrystals by anion exchange enables the absorbance band gap tuned from ultraviolet to near infrared spectra [28,29]. In addition, the perovskite nanocrystals show large absorption range, which offers the great potential for UV and blue light shielding applications. Although the tunable absorption-band edge of perovskite nanocrystals has already been realized, there have not been reports on developing UV and blue light blocking material with tunable absorption-band edge. Herein, we aim to the development of a simple and easy way to fabricate UV and blue light blocking material by mixing pervoskite nanocrystals and ethyl cellulose (EC). In this study, EC was used as a host material for the CsPb(Cl/Br)3 pervoskite nanocrystals. By tuning the ratio of Br to Cl, the blocked wavelength range could be easily controlled. Using the sharp absorption edges, the material possesses excellent light blocking ability in the range of 200-460 nm and maintains high transparency (95%) to visible light in the range beyond blue light.

    关键词: UV blocking,Cesium lead halide nanocrystals,Blue light blocking,Tunable adsorption edge,Perovskite nanocrystals

    更新于2025-09-23 15:23:52

  • Direct Synthesis of Quaternary Alkylammonium Capped Perovskite Nanocrystals for Efficient Blue and Green Light-Emitting Diodes

    摘要: Cesium lead halide nanocrystals (CsPbX3 NCs) are newcomer inorganic light sources covering the entire visible spectral range and exhibiting near-unity efficiencies. While the last years have seen rapid progress in green- and red-electroluminescence from CsPbX3 NCs, the development of blue counterparts remained rather stagnant. Controlling the surface state of CsPbX3 NCs had proven to be a major factor governing the efficiency of the charge injection and for diminishing the density of traps. Although didodecyldimethylammonium halides (DDAX, X=Br, Cl) had been known to improve the luminescence of CsPbX3 NCs when applied post-synthetically, they had not been used as a sole long-chain ammonium ligand directly in the synthesis of these NCs. Herein we report a facile, direct synthesis of DDAX-stabilized CsPbX3 NCs. We then demonstrate blue and green light-emitting diodes, characterized by the electroluminescence at 463-515 nm and external quantum efficiencies of 9.80% for green, 4.96% for sky-blue and 1.03% for deep-blue spectral regions.

    关键词: Cesium lead halide nanocrystals,DDAX-stabilized,external quantum efficiencies,light-emitting diodes,electroluminescence

    更新于2025-09-16 10:30:52