修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • Acceptora??donora??acceptor type molecules for high performance organic photovoltaics a?? chemistry and mechanism

    摘要: The study of organic photovoltaics (OPVs) has made great progress in the past decade, mainly attributed to the invention of new active layer materials. Among various types of active layer materials, molecules with A–D–A (acceptor–donor–acceptor) architecture have demonstrated much great success in recent years. Thus, in this review, we will focus on A–D–A molecules used in OPVs from the viewpoint of chemists. Notably, the chemical structure–property relationships of A–D–A molecules will be highlighted and the underlying reasons for their outstanding performance will be discussed. The device stability correlated to A–D–A molecules will also be commented on. Finally, an outlook and challenges for future OPV molecule design and device fabrication to achieve higher performance will be presented.

    关键词: chemical structure–property relationships,device stability,organic photovoltaics,acceptor–donor–acceptor,molecule design

    更新于2025-09-23 15:21:01

  • Organic Photovoltaics: Relating Chemical Structure, Local Morphology, and Electronic Properties

    摘要: Substantial enhancements in the efficiencies of bulk-heterojunction (BHJ) organic solar cells (OSCs) have come from largely trial-and-error-based optimizations of the morphology of the active layers. Further improvements, however, require a detailed understanding of the relationships among chemical structure, morphology, electronic properties, and device performance. On the experimental side, characterization of the local (i.e., nanoscale) morphology remains challenging, which has called for the development of robust computational methodologies that can reliably address those aspects. In this review, we describe how a methodology that combines all-atom molecular dynamics (AA-MD) simulations with density functional theory (DFT) calculations allows the establishment of chemical structure–local morphology–electronic properties relationships. We also provide a brief overview of coarse-graining methods in an effort to bridge local to global (i.e., mesoscale to microscale) morphology. Finally, we give a few examples of machine learning (ML) applications that can assist in the discovery of these relationships.

    关键词: Machine Learning,Density Functional Theory,Organic Photovoltaics,Organic Solar Cells,Bulk-Heterojunction,Electronic Properties,Coarse-Graining Methods,Local Morphology,Chemical Structure,All-Atom Molecular Dynamics

    更新于2025-09-23 15:19:57

  • Benzodithiophenedione-based polymers: recent advances in organic photovoltaics

    摘要: Over the past 20 years, significant progress has been made in organic photovoltaics (OPVs) due to its advantages of being cost-effective, being lightweight, and having flexible manufacturability. The optical-active layer of OPVs consists of a p-type polymer as the donor and an n-type small molecule as the acceptor. An efficient design strategy of a polymer donor is based on an alternating electron-donating unit (D) and an electron-accepting unit (A). Among numerous electron-accepting units, an emerging annelated thiophene of benzodithiophenedione (BDD) has exhibited a distinguished photovoltaic performance because of its planar molecular structure, low-lying highest occupied molecular orbit (HOMO) level and good self-assembly property. In this review article, we summarize the most recent developments in BDD-based photovoltaic materials. Special attention is paid to the chemical structure-property relationships, such as the absorption, bandgap, energy levels, mobilities, and photovoltaic performances. The empirical regularities and perspectives on the future development of BDD-based photovoltaic materials are included.

    关键词: chemical structure-property relationships,benzodithiophenedione,photovoltaic performance,polymer donors,organic photovoltaics

    更新于2025-09-16 10:30:52

  • Chemical Structure of EVA Films Obtained by Pulsed Electron Beam and Pulse Laser Ablation

    摘要: Poly(ethylene-co-vinyl acetate) (EVA) films were deposited for the first time using physical methods. The chemical structure of the films obtained using two techniques, pulsed electron beam deposition (PED) and pulsed laser deposition (PLD), was studied by attenuated total reflection Fourier infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Whilst significant molecular degradation of the EVA films was observed for the PLD method, the original macromolecular structure was only partially degraded when the PED technique was used, emphasizing the superiority of the PED method over PLD for structurally complex polymers such as EVA. Optical and scanning electron microscopic observations revealed compact and smooth EVA films deposited by pulsed electron beam ablation as opposed to heterogeneous films with many different sized particulates obtained by PLD.

    关键词: chemical structure analysis,poly(ethylene-co-vinyl acetate),pulsed laser deposition,pulsed electron beam deposition

    更新于2025-09-11 14:15:04