修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • [IEEE 2018 20th International Conference on Transparent Optical Networks (ICTON) - Bucharest (2018.7.1-2018.7.5)] 2018 20th International Conference on Transparent Optical Networks (ICTON) - Planning of Geo-Distributed Cloud Data Centers in Fast Developing Economies

    摘要: In recent years, with the rapid development of big data, artificial intelligence and cloud computing, the construction of cloud data centers has entered into a fast-growing period, especially in fast developing economies. The placement for geo-distributed cloud data centers has a great impact on costs and performance. In this paper, we propose a framework to determine the optimal placement of geo-distributed cloud data centers, taking into considering both cost minimization and network performance. In we apply this framework to the placement to cloud data centers in China. We show how the DC placement may be affected by network performance requirements. We also show how factors like population mobility and adoption of clean energy, typical in fast developing economies, may affect DC placement. We research provides insights to the long term DC planning in fast developing economies.

    关键词: network performance,fast developing economies,geo-distributed cloud data centers,cost minimization

    更新于2025-09-23 15:21:01

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - PV system performance evaluation by clustering production data to normal and non-normal operation.

    摘要: Cloud service providers are typically faced with three significant problems when running their cloud data centers, i.e., rising electricity bills, growing carbon footprints, and unexpected power outages. To mitigate these issues, running cloud data centers in smart microgrids (SMGs) is a good choice, since SMGs can enhance the energy efficiency, sustainability, and reliability of electrical services. Thus, in this paper, we investigate the problem of energy management for cloud data centers in SMGs. To be specific, we would minimize the time average expected energy cost (including electricity bill, battery depreciation cost, the total generation cost of conventional generators, and revenue loss due to the unfinished workloads) with the consideration of three practical factors, i.e., the ramping constraints of backup generators, the charging and discharging efficiency parameters of batteries, and two kinds of data center workloads. A stochastic programming is formulated by integrating the constraints associated with workload allocation, electricity buying/selling, battery management, backup generators, and power balancing. To solve the stochastic programming problem, an online algorithm is designed, and the algorithmic performance is analyzed. Simulation results show the advantages of the designed algorithm over other baselines.

    关键词: energy cost,uncertainty,smart microgrids,Cloud data centers

    更新于2025-09-23 15:19:57

  • [IEEE 2019 21st International Conference on Transparent Optical Networks (ICTON) - Angers, France (2019.7.9-2019.7.13)] 2019 21st International Conference on Transparent Optical Networks (ICTON) - Open Standard Test Framework for Photonic Integrated Circuits

    摘要: Cloud service providers are typically faced with three significant problems when running their cloud data centers, i.e., rising electricity bills, growing carbon footprints, and unexpected power outages. To mitigate these issues, running cloud data centers in smart microgrids (SMGs) is a good choice, since SMGs can enhance the energy efficiency, sustainability, and reliability of electrical services. Thus, in this paper, we investigate the problem of energy management for cloud data centers in SMGs. To be specific, we would minimize the time average expected energy cost (including electricity bill, battery depreciation cost, the total generation cost of conventional generators, and revenue loss due to the unfinished workloads) with the consideration of three practical factors, i.e., the ramping constraints of backup generators, the charging and discharging efficiency parameters of batteries, and two kinds of data center workloads. A stochastic programming is formulated by integrating the constraints associated with workload allocation, electricity buying/selling, battery management, backup generators, and power balancing. To solve the stochastic programming problem, an online algorithm is designed, and the algorithmic performance is analyzed. Simulation results show the advantages of the designed algorithm over other baselines.

    关键词: Cloud data centers,energy cost,uncertainty,smart microgrids

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Development and Mass Production of Bifacial Q.ANTUM p-Cz PERC Cells

    摘要: Cloud service providers are typically faced with three significant problems when running their cloud data centers, i.e., rising electricity bills, growing carbon footprints, and unexpected power outages. To mitigate these issues, running cloud data centers in smart microgrids (SMGs) is a good choice, since SMGs can enhance the energy efficiency, sustainability, and reliability of electrical services. Thus, in this paper, we investigate the problem of energy management for cloud data centers in SMGs. To be specific, we would minimize the time average expected energy cost (including electricity bill, battery depreciation cost, the total generation cost of conventional generators, and revenue loss due to the unfinished workloads) with the consideration of three practical factors, i.e., the ramping constraints of backup generators, the charging and discharging efficiency parameters of batteries, and two kinds of data center workloads. A stochastic programming is formulated by integrating the constraints associated with workload allocation, electricity buying/selling, battery management, backup generators, and power balancing. To solve the stochastic programming problem, an online algorithm is designed, and the algorithmic performance is analyzed. Simulation results show the advantages of the designed algorithm over other baselines.

    关键词: energy cost,uncertainty,smart microgrids,Cloud data centers

    更新于2025-09-16 10:30:52