修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

143 条数据
?? 中文(中国)
  • Optical Electronics (An Introduction) || 3. Bulk solid-state lasers

    摘要: Solid-state lasers use solid-state laser medium as the working substance. Usually, solid work materials are incorporated in the matrix with a small amount of activated ions. Laser transition occurs between different energy levels during ion activation. Matrix materials are mainly crystal, glass, and ceramics, and activated ions can be categorized as trivalent rare earth metal ions, divalent rare earth metal ions, transition metal ions, and actinide metal ions.

    关键词: crystal,activated ions,laser medium,heat capacity laser,ceramics,LD-pumped,glass,solid-state lasers

    更新于2025-09-16 10:30:52

  • Chromenopyrazole-based bipolar host materials for solution-processable thermally activated delayed fluorescence OLEDs exhibiting high efficiency and low roll-off

    摘要: This study reports the design, synthesis, and characterization of two new bipolar host materials, DCzCP and TCzCP. Both materials were implemented as hosts by doping a known green thermally activated delayed fluorescent (TADF) emitter (t4CzIPN) in solution-processable OLEDs. DCzCP-based devices a?ord the best performance with the maximum external quantum e?ciency (EQE) of 21.2%. Notably, the EQE was maintained at 20.7% and 19.7% at a practical luminance of 500 cd m(cid:2)2 and 1000 cd m(cid:2)2, respectively, demonstrating very small roll-o?.

    关键词: thermally activated delayed fluorescence,high e?ciency,bipolar host materials,low roll-o?,Chromenopyrazole,OLEDs,solution-processable

    更新于2025-09-16 10:30:52

  • Electrostatic potential dispersing pyrimidine-5-carbonitrile acceptor for high efficiency and long lifetime thermally activated delayed fluorescence organic light-emitting diodes

    摘要: Pyrimidine-5-carbonitrile was developed as an electrostatic potential managing and strong acceptor moiety of thermally activated delayed fluorescence (TADF) emitters for high efficiency and long lifetime in devices. Two types of TADF emitters with the donor moiety extended from either the 2 or 4 position of the acceptor moiety were prepared to study the effect of the donor substitution position on the TADF characteristics of the TADF emitters. Comparison of the two types of TADF emitters suggested that the extension of the donor structure from the 4 position of the pyrimidine-5-carbonitrile acceptor is an effective way of enhancing the external quantum efficiency (EQE) and lifetime of the TADF devices. A high EQE of 19.8% and lifetime exceeding that of the state-of-the-art green TADF emitter were demonstrated using one of the pyrimidine-5-carbonitrile derived emitters through the uniformly distributed electrostatic potential.

    关键词: organic light-emitting diodes,Pyrimidine-5-carbonitrile,thermally activated delayed fluorescence,electrostatic potential,high efficiency,long lifetime

    更新于2025-09-16 10:30:52

  • Photophysics and electroluminescence of red quantum dots diluted in a thermally activated delayed fluorescence host

    摘要: A feasible, universal, and low-cost strategy for quantum dot light-emitting devices (QLEDs) was provided to significantly enhance the electroluminescent performances. The emissive layer consists of organic host materials and quantum dots (QDs), and then the efficient energy transfer process remarkably promotes the device performances. It is confirmed that a highly efficient QLED can be realized by a host–guest system without common hole transport layers. The red device based on the thermally activated delayed fluorescence host and QD guest achieved a peak external quantum efficiency of 7.4%. Further, by simply modifying PEDOT:PSS with poly(4-styrenesulfonic acid), the work-function can be easily elevated, accompanied with the boosted external quantum efficiency to 11.9%. It is believed that such performances originate simultaneously from reduced interfacial fluorescence quenching, elevated work-function and efficient F?rster resonance energy transfer in the host–guest system.

    关键词: external quantum efficiency,electroluminescent performances,quantum dot light-emitting devices,QLEDs,thermally activated delayed fluorescence,F?rster resonance energy transfer,host–guest system

    更新于2025-09-16 10:30:52

  • Blue thermally activated delayed fluorescence emitters incorporating acridan analogues with heavy group 14 elements for high-efficiency doped and non-doped OLEDs

    摘要: Deep-blue thermally activated delayed fluorescence (TADF) emitters are promising alternatives for conventional fluorescence and phosphorescence materials for practical application in organic light-emitting diodes (OLEDs). However, as appropriate bipolar hosts for deep-blue TADF-OLEDs are scarce, the development of efficient deep-blue TADF emitters that are applicable to both doped and non-doped systems is an urgent task. In this study, we developed a new family of blue TADF emitters that demonstrated high photoluminescence (PL) and electroluminescence (EL) quantum efficiencies in both doped and non-doped (neat) systems. Four new donor–acceptor (D–A)-type TADF molecules incorporating phenazasiline, phenazagermine, and tetramethylcarbazole as weak D units and phenothiaborin as a weak A unit were designed and synthesized. By varying the structural rigidity/flexibility as well as the electron-donating ability of the D units, the resulting photophysical and TADF properties of the D–A molecules could be systematically regulated. A comprehensive photophysical investigation revealed that phenazasiline and phenazagermine-based emitters concurrently exhibit blue TADF emissions (464–483 nm), high PL quantum efficiencies (≈100%), extremely fast spin-converting reverse intersystem crossing rates (>107 s?1), and suppressed concentration quenching. These fascinating features in conjunction produced high-performance doped and non-doped blue TADF-OLEDs. The doped and non-doped TADF-OLEDs using the phenazasiline-based emitter demonstrated extremely high maximum external EL quantum efficiencies (ηext) of 27.6% and 20.9%, with CIE chromaticity coordinates of (0.14, 0.26) and (0.14, 0.20), respectively. Further, ultra-low efficiency roll-off behavior for both the doped and non-doped devices was demonstrated by their ηext as high as 26.1% and 18.2%, respectively, measured at a practically high luminance of 1000 cd m?2.

    关键词: phenazasiline,phenothiaborin,tetramethylcarbazole,thermally activated delayed fluorescence,OLEDs,phenazagermine,blue emitters

    更新于2025-09-16 10:30:52

  • Achieving high-performance phosphorescent organic light-emitting diodes using thermally activated delayed fluorescence with low concentration

    摘要: We fabricated phosphorescent organic light-emitting diodes (PhOLEDs) using thermally activated delayed fluorescence (TADF) material 10,10'-(4,4'-sulfonylbis(4,1-phenylene)) bis(9,9-dimethyl-9,10-dihydroacridine) (DMAC-DPS) with low concentration, which showed better performance compared with 1,3-bis(carbazole-9-yl) benzene (mCP) based devices. When the concentration of DMAC-DPS was 1wt%, the driving voltage of the device was only 3.3 V at 1 000 cd/m2, and the efficiency and lifetime of the device were effectively improved compared with those of mCP based devices. The result indicated that DMAC-DPS could effectively improve the performance of phosphorescent devices. We believe that the better device performance can be attributed to the optimization of the energy transfer process in the emitter layer and lifetime of triplet excitons by DMAC-DPS. The study may provide a simple and effective strategy to achieve high-performance OLEDs.

    关键词: DMAC-DPS,thermally activated delayed fluorescence,triplet excitons,energy transfer,phosphorescent organic light-emitting diodes

    更新于2025-09-16 10:30:52

  • Synthesis of acridone-naphthylamine derivative and its thermally-activated delayed fluorescence studies for application in OLEDs

    摘要: Acridone (acceptor) and naphthylamine (donor) based Donor-Acceptor-Donor (D-A-D) compound (1) was synthesised, characterised and its thermally-activated delayed fluorescence (TADF) properties were studied in detail. Compound 1 is fluorescent and emits in the green region (550 nm). The energy gap between the ground and the lowest excited singlet (S1) state is estimated to be 2.55 eV. The energy gap between the CT singlet and triplet states (DEST) was found to be *0.3 eV. Small DES1-T1 is one of the important criteria for TADF to take place in a molecule and thus detailed photophysics has been studied. Transient lifetime measurements showed an increase in the fluorescence lifetime (s) on purging with N2, as compared with that in air-saturated solution, indicating the involvement of the triplet state in emission. Emission at 550 nm was also observed with a delay of 100 ls which corresponded to the delayed fluorescence in 1. The lifetime of TADF was found to be 176 ls. Applications of TADF materials in organic light-emitting devices (OLEDs) has gotten attention as TADF materials utilise the triplet excitons which helps in increasing internal quantum efficiency of device. Air-saturated based on 1 were fabricated and their intensity was found to be nearly as high as 17,000 Cd/m2 at 25 mA/cm2 which was comparable to many of the known TADF emitters.

    关键词: Acridone,thermally activated delayed fluorescence,organic light-emitting devices

    更新于2025-09-16 10:30:52

  • High-performance hybrid white organic light-emitting diodes with bipolar host material and thermally activated delayed fluorescent emitter

    摘要: Bipolar host material and thermally activated delayed fluorescent (TADF) emitter were used in hybrid white organic light-emitting diodes (OLEDs) with the aim to achieve high performance. First of all, the single color OLEDs was optimized by changing the thickness of hole transporting layer, electron transporting layer and the doping concentration of emission material. Then, white organic light-emitting diodes (WOLEDs) were fabricated on the basis of the former single color OLEDs by modifying the doping concentration of TADF emitter. Finally, an optimized white device shows the best results of 43.67 cd/A, 45.73 lm/W and 18.52% for current efficiency, power efficiency and external quantum efficiency, respectively. This research may supply a theoretical basis for the development of WOLEDs.

    关键词: Thermally activated delayed fluorescent (TADF),Energy transfer,Hybrid white organic light-emitting diodes (WOLEDs),Bipolar host material,High performance

    更新于2025-09-16 10:30:52

  • Naphthyridine-based thermally activated delayed fluorescence emitters for highly efficient blue OLEDs

    摘要: Two TADF emitters 2,7-di(9H-carbazole)-1,8-naphthyridine (Cz-ND) and 2,7-di(3,6-di-tert-butyl-9H-carbazole)-1,8-naphthyridine (tBuCz-ND) were designed and synthesized. Both of the emitters showed high thermal stabilities and strong blue emissions with high photoluminescence quantum yields, and also exhibited excellent TADF properties with small ?EST values. Consequently, blue organic light-emitting diodes (OLEDs) based on Cz-ND and tBuCz-ND were fabricated, which could achieve maximum external quantum efficiencies (EQEmax) of 15.3 and 20.9%, respectively. Moreover, the devices also exhibited relatively narrow band gaps at 79 and 75 nm with the CIE coordinates of (0.15, 0.17) and (0.15, 0.22), respectively.

    关键词: OLED,blue emission,carbazole,thermally activated delayed fluorescence,naphthyridine

    更新于2025-09-16 10:30:52

  • Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes

    摘要: Since the first attempt that was made to obtain direct circularly polarized (CP) light from OLEDs by Meijer et al. in 1997, considerable efforts have been devoted to the development of circularly polarized organic light-emitting diodes (CP-OLEDs), particularly in the recent years. Circularly polarized electroluminescence (CPEL) based on OLEDs has attracted increasing interest for its efficient ability to generate CP light directly and wide potential applications in 3D displays, optical data storage, and optical spintronics. In this review, we systematically summarize the recent progress in chiral emitter based OLEDs with CPEL properties including CPEL based on chiral conjugated polymers, CPEL based on chiral metal complexes, and CPEL based on chiral simple organic molecules, especially chiral thermally activated delayed fluorescence (TADF) molecules. We believe that this review will provide a promising perspective of chiral emitter based OLEDs with CPEL properties for a broad range of scientists in different disciplinary areas and attract a growing number of researchers to this fast-growing research field.

    关键词: chiral simple organic molecules,circularly polarized electroluminescence,thermally activated delayed fluorescence,chiral conjugated polymers,organic light-emitting diodes,chiral metal complexes

    更新于2025-09-16 10:30:52