- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Coral-Like Perovskite Nanostructures for Enhanced Light-Harvesting and Accelerated Charge Extraction in Perovskite Solar Cells
摘要: A novel coral-like perovskite nanostructured layer was grown on a compact perovskite foundation layer by the facile surface modification with dimethylformamide/isopropanol (DMF/IPA) as co-solvent. Surface morphological characterizations with SEM and XRD analyses revealed a growing mechanism of the new morphology, which was composed of the perovskite decomposition and recrystallization, excessive-PbI2 extraction, and sequential formation of coral-like nanostructured perovskite layer. The coral-like perovskite nanostructures resulted in significant light scattering, enhancing the light harvesting efficiency, and thus augmenting the photocurrent density. Moreover, the geometric configuration of the perovksite solar cells was changed from planar to bulk heterojunction, which results in the acceleration of charge separation and extraction due to the high surface area at the interface between the obtained perovskite and hole-transport layers. The optimal perovskite solar cell exhibited an impressive power conversion efficiency (PCE) of 19.47%, as compared to that of the pristine cell (17.19%).
关键词: solar cells,Bulk heterojunction,light-harvesting,coral-like nanostructures,surface modification,perovskite
更新于2025-11-21 11:01:37
-
A facile room-temperature synthesis of three-dimensional coral-like Ag2S nanostructure with enhanced photocatalytic activity
摘要: Morphology is a crucial factor in determining the chemical, optical, and electrical properties of nanoscale materials. In this work, we utilized a facile room-temperature deposition method to synthesize three-dimensional (3D) coral-like Ag2S nanostructures. The formation mechanism of 3D coral-like Ag2S nanostructures was proposed by tracking the reaction process. In comparison with 0D Ag2S nanoparticles and 1D Ag2S nanowires of similar size, 3D coral-like Ag2S nanostructures exhibit higher pore volume, photocatalytic activity and cyclic stability for degradation of methyl orange (MO). Surface photovoltage measurement, electrochemical impedance spectroscopy, and Mott–Schottky analysis showed that compared to other Ag2S nanostructures, 3D coral-like Ag2S nanostructures have the strongest surface photovoltaic response, longest carrier lifetime, and highest carrier density.
关键词: Carrier lifetime,Surface photovoltage,Ag2S,3D coral-like nanostructure,Photocatalytic activity
更新于2025-09-23 15:21:21
-
Controlled Synthesis of Coral-Like CuO Dendrites with Enhanced Photocatalytic Performance
摘要: In this work, coral-like CuO dendrites were successfully synthesized by a solvothermal method in the mixed solvent of distilled water and ethanol with assistance of dodecyl trimethyl ammonium bromide (DTAB). The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis techniques, to investigate their structure and morphology. The coral-like CuO dendrites were about 1 μm in length, with many dendrites pointing to a common center. The influence of experimental conditions on morphology, such as volume ratio of water to ethanol, surfactant DTAB and molar ratio of Na2CO3 and Cu(CH3COO)2, was also discussed. Time-dependent experiment was carried out to explore the formation mechanism while a “particle-sheet-dendrite (PSD)” mechanism was proposed to explain the growth process. The as-prepared CuO dendrites were used to degrade methylene blue (MB) under visible light irradiation in the presence of H2O2, where over 98% of methylene blue (MB) was degraded in 1 h. Results from the study demonstrated that the as-prepared coral-like CuO dendrites exhibited enhanced photocatalytic performance and excellent stability and reusability.
关键词: Photocatalytic Performance,Solvothermal Method,Coral-Like CuO Dendrites
更新于2025-09-23 15:21:01
-
Ultrasound assisted deposition of highly stable self-assembled Bi2MoO6 nanoplates with selective crystal facet engineering as photoanode
摘要: The use of crystal facets of photocatalysts is well known as a promising strategy for the design of new photocatalysts with interesting physicochemical features for energy production applications. In this work, Bi2MoO6 thin films were synthesized by two methods, electrodeposition and sonoelectrodeposition. Preferential growth orientation depended on synthesis method. Results suggested that sonoelectrodeposition led to dominate the crystal facet {1 0 0} growth with self-assembled nanoplate morphologies while growth orientation in the {0 1 0} facet was dominant in electrodeposition in the absence of ultrasonic waves. As a highlight result, the {1 0 0} facet shows a smaller band gap, higher photocatalytic water splitting than the {0 1 0} facet. Efficient separation of charge pairs and long life time of photogenerated electrons was observed to be intrinsic features of the {1 0 0} facets. The higher charge transfer was confirmed by a higher photocurrent from linear sweep voltammetry and a smaller Nyquist radius arc. Ultrasound plays a key role in growth orientation and led to a production of homogeneous films with nanoplates which self-assembled together to form a flower-like structure. While in the absence of ultrasound the film has coral-like structure. Highly stable sonoelectrodeposited films exhibited incident photon-to-electron conversion efficiency (IPCE) of 22.4% at the specific wavelength of 500 nm. The sonoelectrodeposition method could act as a promising method for forming new films with specific crystal facet selection and developing as highly efficient photoanodes for PEC water splitting.
关键词: Crystal facet engineering,Coral-like,Water splitting,Bismuth molybdate,Self-assembled nanoplates,Sonoelectrodeposition
更新于2025-09-23 15:21:01
-
Enhanced visible-light photoelectrochemical hydrogen evolution through degradation of methyl orange in a cell based on coral-like Pt-deposited TiO2 thin film with sub-2 nm pores
摘要: TiO2 nanoparticles exhibit good photocatalytic activity for hydrogen evolution through water splitting; however, they demonstrate weak activity under visible light irradiation due to the wide band gap of TiO2. Deposition with noble metals such as platinum, as cocatalyst, led to the red-shift of the absorption edge of rutile TiO2; however, its activity is not significant for the photoelectrochemical (PEC) degradation of azo dyes such as methyl orange (MO). Herein, we investigated the photoelectrocatalytic degradation reaction of MO in a PEC cell based on Pt-deposited TiO2 thin film. The performance of the cell increased through the formation of mesoporous coral-like structures with sub-2 nm pores and the formation of defect states on the electrode surface. UV–vis studies confirmed, when methanol was added, the PEC cell exhibited a much higher MO degradation efficiency (99.6% after 28 min UV irradiation) than in the absence of methanol (64.7%). GC–MS studies confirmed the oxidation of methanol to formaldehyde, reacting on the electrode surface, followed by the reduction of the protons into hydrogen over the Pt sites. Also, the conversion of formaldehyde to formic acid and formic acid to CO2 are possible mechanisms to increase the hydrogen evolution rate to 418 μmol/h under visible light irradiation. Reaction of adsorbed active species within the surface of coral-like TiO2 structures with sub-2 nm pores provides high activity of the proposed PEC cell for visible-light-driven water splitting. These research studies may be continued to the design of other efficient semiconductor photocatalysts.
关键词: Photoelectrocatalytic activity,Photoelectrochemical cell,Coral-like TiO2 nanopores,Hydrogen production,Dye degradation
更新于2025-09-04 15:30:14