修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Determination of local muon flux using astronomical Charged Coupled Device

    摘要: As an abundant component of secondary cosmic rays at the Earth, muons carry significant data, such as information on mass number of primary particles producing extensive air showers. Anyhow, the total muon flux is an important observable in many phenomena, for example it is suggested that the muon flux is influenced by the level of solar activity at the Earth, while the neutrino anomaly and hadronic interaction models are studied through the products of muon decay. As a result a part of any cosmic ray detector is designed to observe muons, count and evaluate their energy and angular distribution. Thus a simple method was started in Research Institute for Astronomy and Astrophysics of Maragha, University of Maragheh to study the recorded tracks of particles by an astronomical CCD at 1478 m above sea level. To analyze recorded data and determine the muon flux from experiments, the flux of secondary atmospheric muons simulated with CORSIKA code (version 6.9) to study the muon angular distribution for our geographical location (latitude: 46.2534 E, longitude: 37.3892 N). The data used here were gathered during a ground run on 4 months (of 2016 and 2017), at Maragheh, Iran. The paper presents numerical results of the muon's flux obtained at 1478 m above sea level which is in good agreement with expected values from simulations. The results were compared with experimental data from different experiments.

    关键词: Simulation,CORSIKA,Cosmic rays,Detector,Muon,CCD

    更新于2025-09-23 15:19:57

  • Charge measurement of cosmic ray nuclei with the plastic scintillator detector of DAMPE

    摘要: One of the main purposes of the DArk Matter Particle Explorer (DAMPE) is to measure the cosmic ray nuclei up to several tens of TeV or beyond, whose origin and propagation remains a hot topic in astrophysics. The Plastic Scintillator Detector (PSD) on top of DAMPE is designed to measure the charges of cosmic ray nuclei from H to Fe and serves as a veto detector for discriminating gamma-rays from charged particles. We propose in this paper a charge reconstruction procedure to optimize the PSD performance in charge measurement. Essentials of our approach, including track finding, alignment of PSD, light attenuation correction, quenching and equalization correction are described detailedly in this paper after a brief description of the structure and operational principle of the PSD. Our results show that the PSD works very well and almost all the elements in cosmic rays from H to Fe are clearly identified in the charge spectrum.

    关键词: Charge measurement,Cosmic rays,Calibration

    更新于2025-09-04 15:30:14