- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Effects of coverage layer on the electrochemical corrosion behaviour of Mg-Al-Mn alloy subjected to massive laser shock peening treatment
摘要: Effects of coverage layer on electrochemical corrosion behaviour and pitting morphologies of Mg-Al-Mn alloy subjected to massive laser shock peening (LSP) treatment were investigated by potentiodynamic polarisation test, electrochemical impedance spectroscopy (EIS), and scanning electron microscope (SEM) observations. Microstructures of Mg-Al-Mn alloy subjected to massive LSP treatment were also characterized. Results showed that LSP induced an obvious improvement in electrochemical corrosion resistance with increasing coverage layer. Even in a higher corrosive solution concentration, LSP could still prevent corrosion to some extent. The improvement in electrochemical corrosion resistance was due to the grain refinement and compressive residual stress induced by massive LSP treatment. Finally, the influence mechanism of the coverage layer on electrochemical corrosion behavior of Mg-Al-Mn alloy was revealed.
关键词: Microstructure.,Electrochemical corrosion,Mg-Al-Mn alloy,Coverage layer,Laser shock peening
更新于2025-09-23 15:23:52
-
Laser cavitation peening of gray cast iron: Effect of coverage layer on the surface integrity
摘要: Copper coverage layer was employed to the laser cavitation peening (LCP) of HT200 gray cast iron. The process of bubble evolution, velocity field of bubble, impact of water-jet, deformation and stress of material were simulated. The effects of coverage layer on the surface integrity (surface morphology and roughness, residual stress, micro-hardness) of LCP treated HT200 under various laser energies and defocusing amounts were systemically investigated. The results indicate that the maximum velocity of water-jet is 380 m/s and the diameter is 0.1 mm. The surface roughness of HT200 increases after the treatment of LCP. The presence of Copper coverage layer makes the HT200 surface more flat and the surface roughness decreases by half. At the case of no coverage layer, the parameters of 200 mJ laser energy and 1 mm defocusing amount are optimal for roughness, compressive residual stress and micro-hardness. Higher laser energy produces higher magnitude of micro-hardness and compressive residual stress in the case of coverage layer, and the optimal defocusing amount is 0 mm.
关键词: Coverage layer,surface integrity,simulation,Laser cavitation peening,HT200 gray cast iron
更新于2025-09-23 15:21:01