- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Intra-hour Forecasting for a 50 MW Photovoltaic System in Uruguay: Baseline Approach
摘要: The performance of a nonintrusive load monitoring (NILM) system heavily depends on the uniqueness of the preferred load signature (LS) extracted from each appliance. Some electrical characteristics, such as instantaneous current waveform (CW), instantaneous power waveform, current harmonic, and voltage–current (V –I) trajectory have been proposed as appliance features in the literature. However, in some situations, these LSs cannot effectively distinguish different loads apart. In this paper, a time-domain-based advanced power theory is used to decompose the load current into the active and nonactive orthogonal components. Then, two new LSs have been established based on the nonactive component of the load current, namely, the nonactive CW (if) and the voltage-nonactive current (V –If ) characteristics curve. Simulation and experimental tests show that both of these features can distinguish different appliances. Hence, the proposed LSs can signi?cantly enhance the existing NILM systems.
关键词: power theory,Non-intrusive load monitoring (NILM),load signature (LS),non-active current
更新于2025-09-23 15:19:57
-
Nd-Cr co-doped BiFeO3 thin films for photovoltaic devices with enhanced photovoltaic performance
摘要: BiFeO3 films and Nd-Cr co-doped BiFeO3 films were prepared by sol-gel method followed by spinning process on fluorine-doped tin oxide glass substrates. By testing the ultraviolet-visible absorption spectra, it was found that Nd-Cr co-doping will increase the light absorption rate of the film and reduce the optical band gap. The reduced bandgap can facilitate the transport of carriers. After Nd-Cr co-doping, the leakage current of the film is effectively reduced, which is near four orders of magnitude lower than the leakage current density of the pristine BiFeO3 film. The reduction of leakage current will enhance the ferroelectric polarization. The enhancement of ferroelectric polarization is more favorable for the separation of photogenerated carriers. Compared with the pristine BiFeO3 film, the short circuit photocurrent density, open circuit photovoltage and power conversion efficiency of Nd-Cr co-doped BiFeO3 film are all clearly improved. The Nd-Cr co-doped BiFeO3 films exhibited largely enhanced photovoltaic property, which favored the practical application of BiFeO3-based films in photovoltaic devices.
关键词: Element doping,Thin films,Ferroelectric property,Photovoltaic property,Bismuth ferrite,Leakage current
更新于2025-09-23 15:19:57
-
Surface modification of AlN using organic molecular layer for improved deep UV photodetector performance
摘要: Direct wide bandgap of 6.2 eV, high temperature robustness and radiation hardness make aluminum nitride (AlN) a preferable semiconductor for deep ultraviolet (UV) photodetection. However, the performance and reliability of AlN- based devices is adversely affected by a large density of surface states present in AlN. In this work, we have investigated the potential of a monolayer of organic molecules in passivating the surface states of AlN which improved the performance of AlN- based metal- semiconductor- metal (MSM) deep UV photodetectors. The organic molecules of Meso-5,10,15-triphenyl-20-(p-hydroxyphenyl)porphyrin Zn(II) complex (ZnTPP(OH)) were successfully adsorbed on AlN surface, forming a self- assembled monolayer (SAM). The molecular layer was characterized by contact angle measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The surface modification of AlN effectively reduced dark current of the photodetector by ten times without degrading the magnitude of photo current, especially at low voltages. Photo to dark current ratio (PDCR) was enhanced from 930 to 7835 at -2V and the responsivity doubled from 0.3 mA/W to 0.6 mA/W at 5V. Moreover, the rise and fall times of the detector were found to decrease after the surface modification process. Our results suggest that SAM of porphyrin molecules effectively passivated the surface states in AlN which resulted in improved photodetector performance.
关键词: Dark current,PDCR,MSM UV photodetector,Surface states,SAM,Responsivity,Temporal response
更新于2025-09-23 15:19:57
-
Research on Degradation of GaN-Based Blue LED Caused by <i>?3</i> Radiation under Low Bias
摘要: GaN multiquantum-well blue light-emitting diodes (LEDs) were radiated with 60Co c-rays for accumulated doses up to 2.5 Mrad (SiO2). The radiation-induced current and 1/f noise degradations were studied when the devices operate at the low bias voltage. The current increased by 2.31 times, and the 1/f noise increased by 275.69 times after a dose of 2.5 Mrad (SiO2). Based on Hurkx’s trap-assisted tunneling model, the degradation of current was explained. c radiation created defects in the space-charge region of LEDs. These defects as generation-recombination centers lead to the increase in the current. In addition, based on the quantum l/f noise theory, the degradation of 1/f noise might be also attributed to these defects, which caused an increase in the Hooge constant and a decrease in the carrier lifetimes. The current and 1/f noise degradations can be attributed to the same physical origin. Compared to the current, the 1/f noise parameter is more sensitive, so it may be used to evaluate the radiation resistance capability of GaN blue LEDs.
关键词: Hooge constant,current degradation,1/f noise degradation,trap-assisted tunneling,γ radiation,GaN,LED
更新于2025-09-23 15:19:57
-
Highly Rectifying Heterojunctions Formed by Annealed ZnO Nanorods on GaN Substrates
摘要: We study the effect of thermal annealing on the electrical properties of the nanoscale p-n heterojunctions based on single n-type ZnO nanorods on p-type GaN substrates. The ZnO nanorods are prepared by chemical bath deposition on both plain GaN substrates and on the substrates locally patterned by focused ion beam lithography. Electrical properties of single nanorod heterojunctions are measured with a nanoprobe in the vacuum chamber of a scanning electron microscope. The focused ion beam lithography provides a uniform nucleation of ZnO, which results in a uniform growth of ZnO nanorods. The specific configuration of the interface between the ZnO nanorods and GaN substrate created by the focused ion beam suppresses the surface leakage current and improves the current-voltage characteristics. Further improvement of the electrical characteristics is achieved by annealing of the structures in nitrogen, which limits the defect-mediated leakage current and increases the carrier injection efficiency.
关键词: chemical bath deposition,nanoscale heterojunctions,ZnO nanorods,nanoprobe in the scanning electron microscope,current-voltage characteristics,annealing,focused ion beam patterning
更新于2025-09-23 15:19:57
-
A comparison of mechanisms for improving dark current characteristics in barrier infrared photodetectors
摘要: The dark current characteristics in InAs/GaSb type-II superlattice (SL) barrier infrared photodetectors are theoretically investigated using the drift-diffusion-based device simulator. It is shown that both structures can effectively reduce the dark current compared to the p-i-n photodiode without barrier, and the dependence on the barrier doping density are discussed in detail. There exists an optimum doping density to minimize the dark current in active region (n type), for which two different engineered structures, i.e., called pBn and nBn, are evaluated.
关键词: dark current,pBn,InAs/GaSb type-II superlattice,barrier infrared photodetectors,nBn
更新于2025-09-23 15:19:57
-
[IEEE 2019 International Conference on Optical MEMS and Nanophotonics (OMN) - Daejeon, Korea (South) (2019.7.28-2019.8.1)] 2019 International Conference on Optical MEMS and Nanophotonics (OMN) - Multimodal and Multifunctional Plasmonic Nanostructures and Techniques
摘要: State-space current control enables high dynamic performance of a three-phase grid-connected converter equipped with an LCL filter. In this paper, observer-based state-space control is designed using direct pole placement in the discrete-time domain and in grid-voltage coordinates. Analytical expressions for the controller and observer gains are derived as functions of the physical system parameters and design specifications. The connection between the physical parameters and the control algorithm enables automatic tuning. Parameter sensitivity of the control method is analyzed. The experimental results show that the resonance of the LCL filter is well damped, and the dynamic performance specified by direct pole placement is obtained for the reference tracking and grid-voltage disturbance rejection.
关键词: Active damping,current control,LCL filter,grid-connected converter,parameter sensitivity,sensorless state feedback
更新于2025-09-23 15:19:57
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Bifurcation Structure of Localized Patterns and Spikes in Dispersive Kerr Cavities
摘要: The authors previously succeeded in reducing the shaft voltage of a PWM driven motor with a rotor which had an outer core and an inner core (and the shaft), electrically insulated each other by a resin (hereafter, the insulated rotor). This paper proposes a new method for further reduction of the shaft voltage of a motor with an insulated rotor by adding a capacitor between brackets and N line of the dc link of the inverter. A common-mode equivalent circuit of the system with an ungrounded motor is examined, and the effect of further reduction by the new method is veri?ed by calculation of the shaft voltage from the equivalent circuit and measurement of the shaft voltage of the motor.
关键词: shaft voltage,Bearing current,stray capacitance,common-mode voltage
更新于2025-09-23 15:19:57
-
Dark-current reduction accompanied photocurrent enhancement in p-type MnO quantum-dot decorated n-type 2D-MoS <sub/>2</sub> -based photodetector
摘要: A highly crystalline single- or few-layered 2D-MoS2 induces a high dark current, due to which an extremely small photocurrent generated by a few photons can be veiled or distorted. In this report, we show that suppression in the dark current with the enhancement in the photocurrent of a 2D-based photodetector, which is a prerequisite for photoresponse enhancement, can be achieved by constructing an ideal p-n junction based on functionalizing n-type 2D-MoS2 with p-type quantum dots (QDs). Highly crystalline solution-processed manganese oxide QDs (MnO QDs) are synthesized via the pulsed femtosecond laser ablation technique in ethanol. The ablated MnO QDs are spray-coated on an exfoliated 2D-MoS2 substrate with interdigitated Au electrodes through N2-assisted spraying. In the resulting MnO QD-decorated 2D-MoS2 photodetector with a heterojunction, dark current is reduced and is accompanied by photocurrent enhancement, thereby markedly improving the photoresponsivity and detectivity of MoS2-based devices. To elucidate the underlying mechanisms contributing to this enhancement, power- and wavelength-dependent photoresponses, along with material characterizations based on spectroscopic, chemical, morphological measurements, and analyses, are discussed.
关键词: dark current,quantum dots,2D-MoS2,p-n junction,photodetector,photocurrent
更新于2025-09-23 15:19:57
-
Reducing current fluctuation of Cs3Bi2Br9 perovskite photodetectors for diffuse reflection imaging with wide dynamic range
摘要: Recently, the newly booming metal halide perovskites have attracted extensive attention worldwide due to their outstanding optoelectronic performance, and are expected to be ideal candidates for photodetectors (PDs). However, there is still lack of perovskite PDs-based imaging devices coming into commercialization stage, due to some practical reasons including toxicity brought by lead-based perovskites and the large light current fluctuations. In this paper, for the first time we fabricate a lead-free Cs3Bi2Br9 perovskite PD, and build a prototype of this perovskite PD-based imaging system with diffuse reflection imaging mode. Moreover, we propose a new parameter F related to light current fluctuation to evaluate imaging performance of a PD especially for weak diffuse light condition, and prove its usability by comparison of unoptimized lead-free Cs3Bi2Br9 perovskite PD and atomic layer deposition (ALD) optimized Cs3Bi2Br9 PD. ALD-optimization can improve the quality of perovskite film and suppress the dark current and current fluctuation. Finally, we obtain satisfactory diffuse reflection images of 2D and 3D objects with wide dynamic range. Therefore, the ALD-optimized Cs3Bi2Br9 PD has addressed two major concerns about perovskite PDs-based imaging devices, that may extend application of perovskite materials and improve imaging quality.
关键词: Current fluctuations,Photodetectors,Diffuse reflection imaging,Cs3Bi2Br9 perovskites
更新于2025-09-23 15:19:57