修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia, Spain (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Data Augmentation with Gabor Filter in Deep Convolutional Neural Networks for Sar Target Recognition

    摘要: Deep Convolutional Neural Networks (DCNNs) have been widely used in target recognition due to the availability of large dataset. The DCNNs have the ability of learning highly hierarchical image feature, which provides great opportunity for synthetic aperture radar automatic target recognition (SAR-ATR). However, when the DCNNs were directly applied to the SAR target recognition, it will result in severe overfitting due to limited SAR image training data. To overcome this problem, we present a Gabor-Deep Convolutional Neural Networks (G-DCNNs). Instead of training a deep network with limited dataset of raw SAR images, Gabor features for multi-scale and multi-direction were used for data augmentation as training dataset at first. Then based on this data augmentation method, we designed a DCNNs for SAR image target recognition. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset prove the effectiveness of our method.

    关键词: SAR,Gabor filter,DCNNs,data augmentation

    更新于2025-09-23 15:21:21

  • Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition

    摘要: Multispectral images contain rich recognition information since the multispectral camera can reveal information that is not visible to the human eye or to the conventional RGB camera. Due to this characteristic of multispectral images, multispectral face recognition has attracted lots of research interest. Although some multispectral face recognition methods have been presented in the last decade, how to fully and effectively explore the intraspectrum discriminant information and the useful interspectrum correlation information in multispectral face images for recognition has not been well studied. To boost the performance of multispectral face recognition, we propose an intraspectrum discrimination and interspectrum correlation analysis deep network (IDICN) approach. Multiple spectra are divided into several spectrum-sets, with each containing a group of spectra within a small spectral range. The IDICN network contains a set of spectrum-set-specific deep convolutional neural networks attempting to extract spectrum-set-specific features, followed by a spectrum pooling layer, whose target is to select a group of spectra with favorable discriminative abilities adaptively. IDICN jointly learns the nonlinear representations of the selected spectra, such that the intraspectrum Fisher loss and the interspectrum discriminant correlation are minimized. Experiments on the well-known Hong Kong Polytechnic University, Carnegie Mellon University, and the University of Western Australia multispectral face datasets demonstrate the superior performance of the proposed approach over several state-of-the-art methods.

    关键词: multispectral face recognition,spectra selection,useful interspectrum correlation information exploration,Deep convolutional neural networks (DCNNs),intraspectrum discriminant information exploration

    更新于2025-09-10 09:29:36