修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Understanding the Sensing Mechanism of Rh2O3 loaded In2O3

    摘要: The effect of Rh loading on CO sensing was studied for the case of In2O3. This was done by performing measurements with sensors based on loaded and unloaded materials that were performed at an operation temperature of 300 °C in the presence of low background oxygen concentration according to an experimental procedure that was demonstrated to help clarify the reception/transduction functions of loaded Semiconducting Metal Oxides (SMOX). The experimental investigation methods were DC resistance and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The results indicate that in the case of Rh2O3 loaded In2O3 the reaction primary takes place on the Rh2O3 cluster and the electrical properties of the In2O3 are controlled by the pinning of the SMOX Fermi-level to the one of the Rh2O3 cluster.

    关键词: SMOX,surface chemistry,gas sensors,operando,Rh2O3 loading,DRIFTS,In2O3

    更新于2025-09-23 15:23:52

  • Anion intercalated layered-double-hydroxide structure for efficient photocatalytic NO remove

    摘要: Due to the easily controllable interlayer anions, metal cation composition proportion and thickness, which is beneficial to modify surface chemical state and tune bandgap, layered double hydroxides (LDHs) have great promising potential for photocatalytic applications. In this study, we have successfully synthesized the ZnAl–LDH intercalated the single anion between ZnAl cationic interlayer without anionic impurities by using a facile calcining and reconstructing routes. The electron structure and surface chemical state of the prepared products have been investigated by combining the DFT calculation and experimental characterization methods. UV–vis DRS was used to certify the light absorption of the prepared products, and we performed the DFT calculation to demonstrate the density of state and activation of reactant. These results suggested that the ZnAl–LDH–CO3 possessed the more proper band structure and superior ability to activate NO and O2 for accelerating the photocatalytic NO oxidation activity. Moreover, the In situ DRIFTS with dynamically monitoring intermediates and products over the ZnAl–LDH–CO3 was adopted to declare the photocatalytic NO oxidized process during the photocatalytic reaction process. This work illustrated the influence of different interlayer anions to the electron structure and surface chemical state of ZnAl–LDH structure through the experimental verification combined DFT calculation and the photocatalytic NO oxidized process via In situ DRIFTS analyzing, which would provide a novel way to design and fabricate the efficient photocatalysis, and understand the reaction process.

    关键词: In situ DRIFTS,ZnAl–LDH,DFT calculation,Reaction process and mechanism,Photocatalytic NO oxidation

    更新于2025-09-23 15:19:57