- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Assessment of focused multivector ultraviolet disinfection with shadowless delivery using 5-point multisided sampling of patient care equipment without manual-chemical disinfection
摘要: The aim of this study was to evaluate the performance of a focused multivector ultraviolet (FMUV) system employing shadowless delivery with a 90-second disinfection cycle for patient care equipment inside and outside the operating room (OR) suite without manual-chemical disinfection. A 5-point multisided sampling protocol was utilized to measure the microbial burden on objects inside and outside the OR environment in a 3-phase nonrandomized observational study. Surface sampling was performed pre- and postdisinfection in between cases (IBCs) to assess the performance of manual-chemical disinfection. FMUV system performance was separately assessed pre- and postdisinfection before the first case and IBCs. Additionally, visibly clean high-touch objects were sampled outside the OR, and the microbial burden reductions after FMUV disinfection were quantified without manual-chemical disinfection. Manual-chemical disinfection reduced the active microbial burden on sampled objects IBCs by 52.8%-90.9% (P < .05). FMUV reduced the active microbial burden by 92%-97.7% (P < .0001) before the first case and IBCs combined, and 96.3%-99.6% (P < .0001) on objects outside the OR without chemical disinfection. Five-point multisided sampling proved effective for assessing disinfection performance on all exterior sides of equipment. FMUV produced significant overall reductions of the microbial burden on patient care equipment in all study phases and independent of manual cleaning and chemical disinfection.
关键词: Disinfectants,Surface sampling techniques,Manual cleaning,Environmental disinfection,Ultraviolet germicidal irradiation,Infection prevention
更新于2025-09-10 09:29:36
-
Fabrication of Cobalt Oxide/MWCNTs/ZnO Nanowires/Zn Plate with Enhanced Photocatalytic Activity in Both Chemical and Microbial Systems
摘要: A series of cobalt oxide/MWCNTs/ZnO NWs/Zn photocatalyst plates were successfully fabricated by electrochemical deposition of cobalt oxide and functionalized Multi-walled carbon nanotubes (f-MWCNTs) onto previously synthesized ZnO nanowires/Zn plates. The fabricated plates were examined with regard to the oxidative decomposition (acetic acid), antibacterial [Escherichia coli (E. coli) bacteria] and antifungal [Candida albicans (C. albicans)] activity under UV light irradiation and in dark. ZnO NWs/Zn modified plates by cobalt oxide and MWCNTs resulted in enhanced photocatalytic activities in both chemical and microbial systems. CO2 evaluation tests showed that the Cobalt oxide/MWCNTs/ZnO NWs/Zn could completely decompose bacterial cells under irradiation, possibly owing to the enhanced formation of reactive oxygen species (ROSs). Besides, it was found that the surface properties of photocatalyst plates are more vital for the antimicrobial properties due to a larger interface between microorganisms and plates. Therefore, it is expected that ternary Cobalt oxide/MWCNTs/ZnO NWs/Zn photocatalysts should exhibit broad antimicrobial properties. In addition, the Cobalt oxide/MWCNTs/ZnO NWs/Zn exhibited the highest photocatalytic activity in oxidative decomposition of acetic acid, probably due to the lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antimicrobial mechanism for the microorganism degradation and acetic acid decomposition over Cobalt oxide/MWCNTs/ZnO NWs/Zn were recommended and discussed.
关键词: Photocatalysis,ZnO nanowires/Zn plates,Water treatment,Disinfectants,Organic decomposition
更新于2025-09-09 09:28:46