- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Solution-processed blue quantum-dot light-emitting diodes based on double hole transport layers: Charge injection balance, solvent erosion control and performance improvement
摘要: Solution processed quantum-dot based light emitting diodes (QLEDs) usually suffer from the issues of imbalanced carrier injection (especially for blue QLEDs) and solvent erosion, which prevents these devices from reaching high performance. Here we report a simple and effective method of promoting hole injection and mitigating solvent erosion simultaneously for fabricating high-performance blue QLEDs. Poly [(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(p-butylphenyl))-diphenylamine)] (TFB)/Lithium bis(trifluoromethanesulfonimide) (Li-TFSI)-doped poly(9-vinlycarbazole) (PVK) bi-layers with smooth surfaces/interfaces, prepared via a solution-process by utilizing 1,4-dioxane as the solvent for PVK, were used as hole transport layers (HTLs) for improving the performance of blue QLEDs. The TFB/Li-doped PVK based QLED records 5829 cd/m2 of maximum brightness and 5.37% of peak EQE, which represents 1.1-fold increase in brightness and ~11.5-fold increase in EQE as compared with the devices based on TFB-only HTLs. The enhanced performance for these TFB/Li-doped PVK based QLEDs can be ascribed to more efficient hole injection offered by Li-doped bilayer HTLs with smooth surfaces/interfaces and stepwise energy level alignment. The CIE 1931 color coordinates (0.15, 0.03) for these TFB/Li-doped PVK based QLEDs are close to the National Television System Committee (NTSC) standard blue CIE coordinates, showing promise for use in next-generation full-color displays. This work provides a facile solution method of fabricating TFB/Li-doped PVK bi-layers with smooth surfaces/interfaces and proves the superiority of these TFB/Li-doped PVK bi-layered HTLs in hole transport and injection for high-performance blue QLEDs.
关键词: double hole transport layers,blue quantum-dot light-emitting diodes,charge injection;Lithium salt doped hole transport layer,solvent erosion,solution processability
更新于2025-09-23 15:19:57
-
All-solution processed inverted QLEDs with double hole transport layers and thermal activated delay fluorescent dopant as energy transfer medium
摘要: Highly efficient, all-solution processed inverted quantum dot light-emitting diodes (QLEDs) with high performance are demonstrated by employing poly(9-vinlycarbazole) (PVK) as additional hole transport layer (HTL) and doping it with a blue thermal activated delay fluorescent (TADF) material, 4,5-bis(carbazol-9-yl)-1,2-dicyanobenzene (2CzPN). This PVK: 2CzPN composite layer not only optimizes hole injection, but also utilizes the leaked electrons to enhance device luminance by energy transfer process from 2CzPN to quantum dots (QDs). These benefits enable a 20-fold increment for the device current efficiency (from 0.523 cd/A to 11 cd/A) and a 9.9-fold improvement for the maximum luminance (from 3220 cd/m2 to 35352 cd/m2), compared with those of the standard QLED with poly[(9, 9-dioctylfluorenyl-2,7-diyl)-alt-(4,4'-(N-(4-butylphenyl) (TFB) single HTL. In comparison with the QLED with TFB/pristine PVK double HTLs, the device performance of the optimal QLED with PVK: 2CzPN additional HTL are still 40.8% and 61.7% higher in luminance and current efficiency, respectively.
关键词: Thermally activated delayed fluorescence,Quantum dot light-emitting diode,All-solution process,Energy transfer,Double hole transport layers,Inverted structure
更新于2025-09-12 10:27:22