修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

122 条数据
?? 中文(中国)
  • Dye-sensitized solar cell-thermoelectric hybrid generator utilizing bipolar conduction in a unified element

    摘要: The dye-sensitized solar cell-thermoelectric hybrid generator (DS-TEG), which is a hybridization of a dye-sensitized solar cell (DSSC) and a thermoelectric generator (TEG) not at the structural level but in terms of material-level unification, is presented. The Pt-coated TE element provides electrons to the iodide/triiodide electrolyte to lower the redox barrier. This promotes the reduction of triiodide, resulting in a dramatic increase in the electron recombination lifetime. The available charge density, carrier diffusion coefficient and effective diffusion length were significantly increased when utilizing both types of carriers and acceleration in an iodide/triiodide reduction reaction in the unified DS-TEG.

    关键词: Dye-sensitized solar cell,synergetic effect,dye-sensitized thermoelectric hybrid generator,thermoelectric element,triiodide reduction rate

    更新于2025-09-23 15:21:01

  • Four-Terminal Tandem Solar Cell with Dye-Sensitized and PbS Colloidal Quantum Dot based Sub-cells

    摘要: In this work, high performance four-terminal solution-processed tandem solar cells were fabricated by using dye-sensitized solar cells (DSSC) as top-cells and lead sulfide (PbS) colloidal quantum dot solar cells (CQDSC) as bottom-cells. For dye-sensitized top-cells, three different dye combinations were used while the titanium dioxide (TiO2) scattering layer was removed to maximize the transmission. For the PbS bottom-cells, quantum dots with different size were compared. Over 12% PCE has been achieved by using XL dye mixture and 890 nm PbS QDs, which shows a significant efficiency enhancement when compared to single DSSC or CQDSC sub-cells.

    关键词: dye-sensitized solar cell,quantum dot solar cell,PbS,four-terminal tandem,solution-processed

    更新于2025-09-23 15:21:01

  • Improving performance of ZnO flexible dye sensitized solar cell by incorporation of graphene oxide

    摘要: At today great interest has been paid to hydrogen production by water electrolysis due to their simplicity and low cost. Dye sensitized solar cell are promising devices as renewable electrical power source to achieve water electrolysis because they possess high theoretical ef?ciency compared with Si based solar cells. In this research, ZnO photo catalyst was modi?ed with graphene oxide (GO) by means of high energy milling. The anode of the ?exible dye-sensitized solar cell was fabricated by electrophoretic deposition of the photo catalyst onto ?exible electrodes. The obtained materials were characterized by FTIR, XRD, XPS and SEM–EDS. The ef?ciency and ?ll factor of ZnO and ZnO–GO cells were estimated from the I–V curve, measured under simulated sunlight. The obtained results demonstrate that ZnO–GO cell have higher ef?ciency compared with the ZnO cell. The latter can be explained by the better dispersion of ZnO that enlace the dye adsorption onto the fabricated anode and by the presence of GO that improve the absorption of photons from the light.

    关键词: flexible solar cells,dye sensitized solar cell,graphene oxide,ZnO,electrophoretic deposition

    更新于2025-09-23 15:21:01

  • Trap State and Charge Recombination in Nanocrystalline Passivized Conductive and Photoelectrode Interface of Dye-Sensitized Solar Cell

    摘要: The dynamic competition between electron generation and recombination was found to be a bottleneck restricting the development of high-performance dye-sensitized solar cells (DSSCs). Introducing a passivation layer on the surface of the TiO2 photoelectrode material plays a crucial role in separating the charge by preventing the recombination of photogenerated electrons with the oxidized species. This study aims to understand in detail the kinetics of the electron recombination process of a DSSC fabricated with a conductive substrate and photoelectrode film, both passivized with a layer of nanocrystalline TiO2. Interestingly, the coating, which acted as a passivation layer, suppressed the back-electron transfer and improved the overall performance of the integrated DSSC. The passivation layer reduced the exposed site of the fluorine-doped tin oxide (FTO)–electrolyte interface, thereby reducing the dark current phenomenon. In addition, the presence of the passivation layer reduced the rate of electron recombination related to the surface state recombination, as well as the trapping/de-trapping phenomenon. The photovoltaic properties of the nanocrystalline-coated DSSC, such as short-circuit current, open-circuit voltage, and fill factor, showed significant improvement compared to the un-coated photoelectrode film. The overall performance efficiency improved by about 22% compared to the un-coated photoelectrode-based DSSC.

    关键词: Electron recombination,electrochemical analysis,nanocrystalline coating,Dye-sensitized solar cell,passivation layer

    更新于2025-09-23 15:21:01

  • Effects of oil substrate supplementation on production of prodigiosin by Serratia nematodiphila for dye-sensitized solar cell

    摘要: Bacterial pigments are potential substitute of chemical photosensitizer for dye-sensitized solar cell (DSSC) due to non-toxic and cost effective production from microbial fermentation. Serratia nematodiphila YO1 was isolated from waterfall in Malaysia and identified using 16S ribosomal RNA. Characterization of the red pigment produced by the bacteria has confirmed the pigment as prodigiosin. Prodigiosin was produced from the fermentation of the bacteria in the presence of different oil substrates. Palm oil exhibited the best performance of cell growth and equivalent prodigiosin yield compared to olive oil and peanut oil. Prodigiosin produced with palm oil supplementation was 93 mg/L compared to 7.8 mg/L produced without supplementation, which recorded 11.9 times improvement. Specific growth rate of the cells improved 1.4 times when palm oil was supplemented in the medium. The prodigiosin pigment produced showed comparable performance as a DSSC sensitizer by displaying an open circuit voltage of 336.1 mV and a maximum short circuit current of 0.098 mV/cm2. This study stands a novelty in proving that the production of prodigiosin is favourable in the presence of palm oil substrate with high saturated fat content, which has not been studied before. This is also among the first bacterial prodigiosin tested as photosensitizer for DSSC application.

    关键词: Serratia nematodiphila,prodigiosin,bioreactor,oil substrate,Dye sensitized solar cell

    更新于2025-09-23 15:21:01

  • Design, Synthesis and Photophysical Analysis of New Unsymmetrical Carbazole-Based Dyes for Dye-Sensitized Solar Cells

    摘要: The molecular design, synthesis, and characterization of di-anchoring carbazole-based dyes (Car-Cy, Car-Amin, and Car-Mal) with A-π-D-π-A-π-A structure as materials for dye-sensitized solar cells applications (DSSCs) are reported. The electron-rich carbazole moiety in the structure of synthesized dyes is connected with acceptor/ or anchoring groups (cyanoacetic acid, 4-aminobenzoic acid, and malonic acid) and π-spacers (vinylene and cynovinyl thiophene). Electronic characteristics and molecular geometry of the sensitizers were optimized using Density Functional Theory (DFT), and the influence of dye structure on their photovoltaic performances was studied. Among the synthesized dyes in this research, Car-Amin dye presents a better photovoltaic performance as a sensitizer in the constructed device, with a power conversion efficiency (PCE) of 2.27%, JSC of 5.95 mAcm?2, VOC of 0.54 V and FF of 71%. The enhanced performance of this dye could be related to the powerful electron-withdrawing characteristic of the 4-aminobenzoic acid as an acceptor group in the dye structure. Consequently, the impact of various acceptor groups on the constructed DSSC devices was examined, and the results indicated that the improvement of DSSC performance is due to the presence of 4-aminobenzoic acid as acceptor on the carbazole-based dyes.

    关键词: 4-aminobenzoic acid,Malonic acid,Dye-sensitized solar cell (DSSC),Carbazole,Cyanoacetic acid

    更新于2025-09-23 15:21:01

  • Synthesis and characterization of Sb doped SnO<sub>2</sub> for the photovoltaic applications: different route

    摘要: Antimony doped tin oxide (ATO - Sn0.92O2:Sb0.08) nanoparticles were synthesized by different chemical routes such as Hydrothermal (HT), Sol-gel (SG) and Sonochemical (SC) methods. The XRD pattern of the samples shows that Sb ion successfully incorporated into Sn lattice without altering the crystal structure. Optical spectral analysis of the samples indicates more absorption in the visible region. The vibrational modes of the ATO nanoparticles were characterized by FTIR spectra. DSSCs were fabricated with the as-prepared ATO nanoparticles from different routes, Eosin-Y dye, I-/I3- redox couple as electrolyte. I-V characteristics of the as fabricated devices were recorded to estimate the efficiency of the device. Our results indicate the DSSC fabricated using the hydrothermally prepared material is to be considered as a suitable optical window material for dye and good electrolyte to achieve higher open circuit voltage (VOC). Further, the anode fabricated using the hydrothermally synthesized ATO nanoparticle gives good efficiency (η = 4.15%) comparing to the DSSCs fabricated using NPs synthesized via other methods. Hence, hydrothermally prepared material is to be considered as a suitable optical window materials for DSSCs.

    关键词: antimony doped tin oxide,Dye sensitized solar cell,optical window

    更新于2025-09-23 15:21:01

  • Imaging Dye Aggregation in MK-2, N3, N749, and SQ-2 dye?·?·?·TiO <sub/>2</sub> Interfaces That Represent Dye-Sensitized Solar Cell Working Electrodes

    摘要: Dye-sensitized solar cells (DSSCs) are a strong contender for next-generation photovoltaic technology with niche applications as solar-powered windows. The performance of a DSSC is particularly susceptible to the dye sensitizer, which is adsorbed onto the surface of a wide-band-gap semiconductor such as TiO2, to form the working electrode. The nature by which such surfaces are sensitized stands to influence the resulting dye···TiO2 interfacial structure and thence the operational performance of the DSSC working electrode. In particular, a nanoscopic understanding of the sensitization process would ultimately help to improve DSSC device function. In this study, atomic force microscopy (AFM) is used to image the nanoscopic formation of dye···TiO2 interfacial structures. This employs, as case studies, four well-known DSSC dyes adsorbed onto amorphous TiO2 substrates: two ruthenium-based dyes, N3 and the Black Dye (N749); and two organic dyes, the thiophenylcarbazole, MK-2, and the zwitterionic squaraine, SQ-2. We discover that all four dyes present some form of aggregation upon sensitization of TiO2, whose spatial distributions show distinct nanoaggregate particle characteristics. These particle clusters of N749, N3, and MK-2 are found to assemble in lines of nanoaggregates, while clusters of SQ-2 dye chromophores distribute themselves randomly on the amorphous TiO2 substrates. This nanoparticle structural assembly persists even when these dye···TiO2 interfaces are fabricated using hundred-fold diluted dye sensitization concentrations. The formation of dye aggregates in N749 is further studied as a function of dye sensitization time. This tracks the pattern formation of aggregates of N749 and reveals that dye aggregation begins within the first hour and has completed within a 5 h period. The large expanse of dye nanoaggregates observed shows that dye···dye interactions are much more important than previously envisaged, while the nature of their spatial distribution can be related to different aggregation modes of the dye molecules. These nanostructural features will undoubtedly impact the performance of DSSCs.

    关键词: aggregation,N749,dye-sensitized solar cell,atomic force microscopy,N3,SQ-2,MK-2

    更新于2025-09-23 15:21:01

  • Osmium sensitizer with enhanced spin-orbit coupling for panchromatic dye-sensitized solar cells

    摘要: Low-lying triplet metal-to-ligand charge transfer (3MLCT) transitions of osmium complexes induced by spin-orbit coupling (SOC) is promising to extend photocurrent response when applied to dye-sensitized solar cells. In this study, we present a newly designed osmium complex (coded CYC-33O), incorporating a 2-thiohexyl-3,4-ethylenedioxythiophene functionalized bipyridyl ancillary ligand to red-shift the absorption and enhance the absorbance of both singlet and triplet MLCT transitions. Time-dependent density functional theory (TDDFT) calculations clearly signify the reinforced 1MLCT and 3MLCT transitions of CYC-33O mainly originate from osmium to 4,4',4"-tricarboxy-2,2':6',2"-terpyridine anchoring ligand, advantaging the heterogeneous electron transfer between CYC-33O and TiO2. The device sensitized with CYC-33O exhibits the panchromatic conversion beyond 1000 nm, yielding the photocurrent density of 19.38 mA cm–2 which is much higher than those of the cells based on the ruthenium analogue (CYC-33R) and model osmium complex (Os-3) sensitizers.

    关键词: dye-sensitized solar cell,triplet metal-to-ligand charge transfer (3MLCT),ruthenium complex,spin-orbit coupling (SOC),osmium complex,time-dependent density functional theory (TDDFT)

    更新于2025-09-23 15:21:01

  • Enhanced Photosensitization by Carbon Dots Co-adsorbing with Dye on p-Type Semiconductor (Nickel Oxide) Solar Cells

    摘要: In this work, the effect of carbon dots (C-dots) on the performance of NiO-based dye-sensitized solar cells (DSSCs) was explored. NiO nanoparticles (NPs) with a rectangular shape (average size: 11.4 x 16.5 nm) were mixed with C-dots, which were synthesized from citric acid (CA) and ethylenediamine (EDA). A photocathode consisting of a composite of C-dots with NiO NPs (NiO@C-dots) was then used to measure the photovoltaic performance of a DSSC. A power conversion efficiency (PCE) of 9.85 % (430 nm LED@50 mWcm-2) was achieved by a DSSC fabricated via the adsorption of N719 sensitizer with a C-dot content of 12.5 wt% at a 1.5:1 EDA:CA molar ratio. This PCE value was far larger than the PCE value (2.44 or 0.152 %) obtained for a NiO DSSC prepared without the addition of C-dots or N719, respectively, indicating the synergetic effect by the co-adsorption of C-dots and N719. This synergetically higher PCE of the NiO@C-dots-based DSSC was due to the larger amount of sensitizer adsorbed onto the composites with a larger specific surface area and the faster charge transfer in the NiO@C-dots working electrode. In addition, the C-dots bound onto the NiO NPs shorten the bandgap of the NiO NPs due to energy transfer and give rise to faster charge separation in the electrode. The most important fact is that C-dots are the main sensitizer and N719 tightly adsorbed on C-dots and NiO behaves as an accelerator of a positive electron transfer and a restrainer of the electron-hole recombination. These results reveal that C-dots are a remarkable enhancer for NiO NPs in DSSCs, and that NiO@C-dots are the promising photovoltaic-electrode materials for DSSCs.

    关键词: dye-sensitized solar cell,power conversion efficiency,nickel oxide@carbon dots composite,Nickel oxide,carbon dot

    更新于2025-09-23 15:21:01