- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Glucose-derived porous carbon as a highly efficient and low-cost counter electrode for quantum dot-sensitized solar cells
摘要: Biomass-derived porous carbon is widely used in supercapacitors, carbon dioxide capture and lithium–sulfur batteries owing to its advantages such as wide sources, low cost and good stability. However, it is rarely used in quantum dot-sensitized solar cells (QDSCs). Here, glucose-derived porous carbon was obtained by hydrothermal carbonization followed with high-temperature KOH activation, and employed as an efficient counter electrode (CE) for QDSCs. The CV, EIS and Tafel-polarization analysis showed that porous carbon exhibits excellent catalytic activity for reduction of Sn2?. The CE based on porous carbon activated at 900 °C (C900) presents best performance with interface charge transfer resistance (Rct) of 2.4 Ω cm2 due to the synergy between high graphitization degree and large specific surface area. The power conversion efficiency (PCE) of the QDSCs assembled with a CdS/CdSe sensitized TiO2 photoanode and the C900 CE is up to 5.61% under one sun illumination. The excellent catalytic activity of C900 is attributed to its large specific surface area and porous structure and high degree graphitization. This suggests that glucose-derived porous carbon can become a potential low-cost and efficient CE material for QDSCs.
关键词: biomass-derived porous carbon,KOH activation,quantum dot-sensitized solar cells,hydrothermal carbonization,counter electrode,glucose
更新于2025-09-19 17:13:59
-
High performance flexible organic photomultiplication photodetector based on ultra-thin silver film transparent electrode
摘要: Flexible and lightweight photomultiplication-type organic photodetectors (PM-OPDs) have attracted wide attention for their broad application prospects, especially in the field of wearable electronic products. However, the common used indium tin oxide (ITO) conductive anode is not conducive to realize high-performance flexible PM-OPD due to its rigidity and fragility. Here, on the flexible polyethylene terephthalate (PET) substrate, we successfully fabricate highly sensitive poly 3-hexylthiophene:phenyl-C70-butyric acid methyl ester (P3HT:PC70BM, 100:1) based PM-OPDs using ultra-thin silver films as the transparent anode. Specifically, a 1 nm thick MoO3 layer is utilized as the wetting layer for facilitating the silver film percolation, and a 2 nm thick MoO3 layer, as the hole transport layer, is coated on top of the ultra-thin silver film before coating the P3HT:PC70BM film. The as-prepared flexible PM-OPDs based on the ultra-thin silver film exhibit the optimal external quantum efficiency (EQE) and responsivity (R) of 1.3×105 % and 388.4 A/W, respectively, under -15 V bias, which are 1.98 times and 2.15 times greater than those of the ITO anode based device. More importantly, the device has good flexibility with the EQE maintaining 70.6% of its initial value after 10 times of bending, and 51.4% of its initial value after 1000 times of bending. This work paves the way for developing flexible PM-OPDs as well as other flexible optoelectronic devices.
关键词: multiplication,transparent electrode,photodetectors,silver film,flexible
更新于2025-09-19 17:13:59
-
Application of carbon dots in dye‐sensitized solar cells: A review
摘要: Carbon dots (CDs) are a kind of zero-dimensional carbon-based nanoparticles with superb light-trapping ability, high optical absorption ability, and superior intrinsic catalytic activity. Due to these advantageous properties, they have received enthusiastic attention from researchers in the field of optical devices. The application of carbon dots in dye-sensitized solar cells has increased with steady steps recently, especially as a substitute for precious Ru-sensitizers and Pt counter electrodes. In this review, we classified the application of carbon dots in dye-sensitized solar cells in recent years and explained the mechanisms of improving the performance of carbon dots. The significant impact of surface functionalization of CDs on the performance of dye-sensitized solar cells was discussed. Lastly, some challenges and application prospects of carbon dots in the dye-sensitized solar cell were proposed, which is meaningful for the further exploration and application of carbon dots as a new energy material.
关键词: sensitizer,counter electrode,carbon dots,surface functionalization,dye-sensitized solar cells
更新于2025-09-19 17:13:59
-
Highly conductive PEDOT:PSS electrode obtained via post-treatment with alcoholic solvent for ITO-free organic solar cells
摘要: We demonstrated a simple and effective processing protocol to improve the electrical conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films via post-treatment with an alcohol-based solvent, 2-chloroethanol (2-CE), and to enhance their performance as a transparent anode in organic photovoltaic cells (OPVs). Owing to its moderate boiling point, in contrast to previously reported chemicals, 2-CE is advantageous both for handling as a liquid-phase chemical and for drying from the films via evaporation. We compared the optical and electrical properties of the 2-CE-treated PEDOT:PSS with those of standard PEDOT:PSS-based electrodes with the addition of 5 vol% dimethyl sulfoxide (DMSO). With a similar thickness and transmittance in the visible region, the 2-CE-treated polymer electrodes outperformed the DMSO-added films with regard to the electrical conductivity (762 S cm-1 vs. 439 S cm-1). The work functions were almost identical: ~5 eV. We fabricated and characterized organic photovoltaic devices using the anodes and polymer:fullerene blends and found that the 2-CE treatment resulted in higher device performance. Additionally, the 2-CE treatment was applicable to OPVs on a flexible plastic substrate, indicating the effectiveness of the proposed protocol.
关键词: solvent treatment,PEDOT:PSS,organic photovoltaics,transparent electrode,conductive polymer
更新于2025-09-19 17:13:59
-
Low Temperature Processed Highly Efficient Hole-Transport-Layer Free Carbon-based Planar Perovskite Solar Cells with SnO2 Quantum Dot Electron-Transport-Layer
摘要: The use of expensive hole transport layer (HTL) and back contact along with the stability issue of perovskite solar cells have been a detrimental factor when it comes to commercialization of the technology. In addition, high-temperature and long annealing time processed electron transport layers (ETLs, e.g., TiO2) prevents the flexible solar cell application in most polymer substrate. Herein, we opted for HTL-free carbon electrodes owing to their low-cost production and superior stability in air, compared to their noble metal counterparts. In this work, we fabricate planar perovskite solar cells using low-temperature solution processed SnO2 quantum dots (QDs) as ETL, which offers significant advantages over high temperature processed ETLs due to its excellent electron extraction and hole blocking ability. In addition, by integrating a low cost and stable carbon electrode, an impressive energy conversion efficiency of 13.64% with a device architecture glass/In doped SnO2/QD-SnO2/Perovskite/Carbon under 1 sun illumination at ambient conditions have been achieved. This work paves the way to achieve fully low-temperature processed printable perovskite solar cells (PSCs) at an affordable cost by integrating the QD SnO2 ETL and Carbon electrode.
关键词: low-temperature process,planar perovskite solar cells,hole transport layer free,carbon electrode,SnO2 Quantum Dot
更新于2025-09-19 17:13:59
-
Flexible perovskite solar cells based on AgNW/ATO composite transparent electrodes
摘要: Silver nanowire (AgNW) transparent electrodes are promising for ?exible perovskite solar cells (PSCs) due to their low cost, high conductivity, high transmittance and roll-to-roll fabrication processes. We resolved problems with incorporating AgNW networks into PSCs such as smooth surface morphology, space ?lling and chemical stability by employing solution-deposition of conductive ATO nanoparticles onto pre-existing AgNW networks at low temperatures. AgNW/ATO composite transparent electrodes show a transmission of 76–82 % in the visible region with an excellent sheet resistance of 18 O sq?1, similar to the commercial PET/ITO transparent electrodes. To build up ?exible PSCs, we adopted an architecture in which the thin ?lm of CH3NH3PbI3 was sandwiched between the ZnO (as the electron-selective layer) and carbon electrode (as the hole-selective layer) on the AgNW/ATO composite transparent electrodes. Under AM 1.5 G and 100 mW cm?2 simulated sunlight illumination, the ?exible PSCs based on AgNW/ATO composite transparent electrodes achieved PCEs of 5.07 %. The ?exible devices maintained their performance after 100 bending cycles at 6 mm radius of curvature.
关键词: Transparent electrode,Silver nanowire,ATO nanoparticles,Flexible,Perovskite solar cell
更新于2025-09-19 17:13:59
-
Quantum dot light-emitting diodes with an Al-doped ZnO anode
摘要: A study of a hybrid ZnCdSeS/ZnS quantum dot light-emitting diodes (QLEDs) device fabricated with indium tin oxide (ITO)-free transparent electrodes is presented. Al-doped zinc oxide (AZO) prepared by magnetron sputtering is adopted in anode transparent electrodes for green QLEDs with different sputtering pressures. The Kelvin probe force microscopy measurement shows that AZO has a work function of approximately 5.0 eV. The AZO/poly(ethylene-dioxythiophene)/polystyrenesulfonate (PEDOT:PSS) interface can be adjusted by the sputtering pressures, which was confirmed by the hole-only devices. The AZO films with low surface roughness can form a good AZO/PEDOT:PSS interface, which can increase the holes’ injection, and result in improved charge balance. The maximum current efficiency, luminance and external quantum efficiency of the optimized QLEDs devices under a sputtering pressure of 1 mTorr can achieve values of 50.75 cd/A, 102,500 cd/m2 and 12.94%, respectively.
关键词: radio-frequency magnetron sputtering,Al-doped zinc oxide,quantum light-emitting diode,transparent electrode
更新于2025-09-19 17:13:59
-
Energy-Level Graded Al-doped ZnO Protection Layer for Copper Nanowire-Based Window Electrodes for Efficient Flexible Perovskite Solar Cells
摘要: Flexible perovskite solar cells (PSCs) have attracted significant interest as promising candidates for portable and wearable devices. Copper nanowires (CuNWs) are promising candidates for transparent conductive electrodes for flexible PSCs because of their excellent conductivity, flexibility, and cost-effectiveness. However, because of the thermal/chemical instability of CuNWs, they require a protective layer for application in PSCs. Previous PSCs with CuNW-based electrodes generally exhibited poor performances compared with their indium tin oxide (ITO)-based counterparts due to the neglect of the interfacial energetics between electron transport layer (ETL) and CuNWs. Herein, an Al-doped ZnO (AZO) protective layer fabricated using atomic layer deposition (ALD) is introduced. The AZO/CuNW-based composite electrode exhibits improved thermal/chemical stability and favorable band alignment between the ETL and CuNWs, based on the Al dopant concentration tuning. As a result, the Al content gradient AZO (g-AZO), composed of three successively deposited AZO layers, leads to highly efficient flexible PSCs with a power conversion efficiency (PCE) of 14.18%, whereas the PCE of PSCs with non-gradient AZO layer is 12.34%. This improvement can be attributed to the efficient electron extraction and reduced charge recombination. Furthermore, flexible PSCs based on g-AZO-based composite electrodes retain their initial PCE, even after 600 bending cycles, demonstrating excellent mechanical stability.
关键词: copper nanowire,flexible perovskite solar cell,transparent bottom electrode,energy level alignment,atomic layer deposition
更新于2025-09-19 17:13:59
-
Boron nitride/sulfonated polythiophene composite electro-catalyst as the TCO and Pt-free counter electrode for dye-sensitized solar cells: 21% at dim light
摘要: Boron nitride (BN) is newly introduced as a non-metal electro-catalyst for the counter electrode of a dye-sensitized solar cell (DSSC). By applying a conductive binder of sulfonated poly(thiophene-3-[2-(2-methoxyethoxy)ethoxy]-2,5-diyl) (s-PT), the BN/s-PT composite film was successfully wrapped around each carbon fiber (CF) in the flexible carbon cloth (CC) substrate via a low-cost drop-coating method. Each CF in CC provided a one-dimensional electron transfer core, and the wrapped BN/s-PT composite film functioned as the mesoporous electro-catalytic shell. Compared to pristine BN and pristine s-PT electrodes, the electrochemical and impedance performances of the BN/s-PT composite film were incredibly enhanced due to the synergetic effect of BN nanoparticle and s-PT binder; the former offered large active surface area and high intrinsic heterogeneous rate constant, the latter formed fast electron transfer matrices. With a proper BN weight percentage among BN/s-PT solutions, the best DSSC coupling with a BN/s-PT composite counter electrode exhibited a good cell efficiency (η) of 9.21% at 1 sun, showing a great potential to substitute the expensive platinum (8.11%). At the dim light environment (i.e., T5 fluorescent illumination), the DSSC reached attractive η’s of 21.02% (6000 lux), 19.52% (3000 lux), and 17.48% (1000 lux).
关键词: boron nitride,DSSC,dim light,sulfonated polythiophene,counter electrode
更新于2025-09-19 17:13:59
-
Facile Fabrication of Highly Conductive, Ultra-Smooth and Flexible Silver Nanowire Electrode for Organic Optoelectronic Devices
摘要: So far, one of the fundamental limitations of silver nanowires is the high contact resistance among their junctions. Moreover, a rough surface due to its random arrangement is inevitable to electrical short when the nanowire-based electronics is driving. To improve the contact resistance, we suggest the particle-shape nanocrystals are intentionally reduced at the junctions by a localized Joule-heat reduction approach from the silver ions. Via localized reductions, the reduced nanoparticles effectively weld the junction’s areas resulting in a 19% decrease in sheet resistance to 9.9 ?sq-1. Besides, the nanowires are embedded into a polyamide film with a gentle hot pressing. Consequently, the roughness was considerably dropped so that it was successful to demonstrate OLEDs (organic light-emitting diodes) with nanowires, which was beneficial to be laminated with OLEDs under the low temperature. The experimental results show the Ag NW embedding films reach 10.9?sq-1 of the sheet resistance at 92% transmittance and the roughness was only 1.92nm.
关键词: embedding,transferring,joule-heat reduction,smooth surface,silver nanowire,transparent conductive electrode
更新于2025-09-19 17:13:59