- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) - Kanpur, India (2019.7.6-2019.7.8)] 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) - Numerical Investigation of Ultra-high Negative Dispersion Compensating Octagonal Photonic Crystal Fiber With High Nonlinearity
摘要: To achieve insights about the impact of amplified loop interference, we consider a dual-hop full-duplex (FD) massive multiple-input multiple-output (MIMO) amplify-and-forward (AF) relaying system in terms of achievable ergodic rates for each user pair as well as spectrum and energy efficiencies. It is assumed that the base station (or relay) is equipped with MRx receive antennas and MTx transmit antennas, while all sources and destinations have a single antenna. For such FD massive MIMO AF relaying systems, the closed-form expressions of the lower bounds of achievable ergodic rates are derived first with a finite number of receive and transmit antennas at base station. Then, the asymptotic performance analysis is performed by considering three different power-scaling schemes: 1) PS = ES /MRx and PR = ER; 2) PS = ES and PR = ER/MTx; and 3) PS = ES /MRx and PR = ER/MTx, where ES and ER are fixed, and PS and PR denote the transmit powers of each source and relay, respectively. Our results show that only when the power-scaling 2) is utilized, do the FD massive MIMO AF relay systems have the ability to restrict the loop interference, so that the system performance is free of loop interference when the number of antennas at the relay is large enough. On the contrary, with the power-scaling cases 1) and 3), the systems have no ability to cancel the loop interference even if MRx or MTx (or both) goes to infinity. The insight is different from the results in the FD massive MIMO decode-and-forward relaying systems where the loop interference can be entirely eliminated for the three power-scaling cases.
关键词: energy efficiency,ergodic rates,Full-duplex,massive MIMO,relay,amplify-and-forward
更新于2025-09-19 17:13:59
-
[IEEE 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM) - Dubai, United Arab Emirates (2020.1.9-2020.1.10)] 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM) - Modelling and Simulation of a Solar PV System: A Comprehensive Study
摘要: Monitoring human bodies and collecting physiological information are the major healthcare applications for wireless body area networks (WBANs). Due to the limited energy resource of body sensors, their energy depletions will cause severe network performance degradation, such as latency and energy efficiency. The heterogeneity of body sensors can result in different sensor energy consumption rates. Besides, the important degrees of monitored physiological data could vary hugely. Targeting at the above-mentioned problems, an energy-efficient data forwarding strategy (EDFS) is proposed in this paper to balance sensor energy consumption and improve network lifetime and collaborative operations of heterogeneous WBANs. Our major contributions include: 1) the original physiological data are processed by compressed sensing to reduce the data size to be transmitted and 2) the remaining energy levels, sampling frequency, and sensor importance are jointly considered by EDFS for the optimal relay sensor selection. With the EDFS, the energy-efficiency and reliability of WBAN data transmission can be improved. In addition, our simulation results demonstrate that the proposed EDFS can effectively deal with the frequently changing WBAN topologies while providing balanced energy consumption and energy efficiency.
关键词: energy efficiency,collaborative forwarding,Wireless body area network,data forwarding
更新于2025-09-19 17:13:59
-
[IEEE 2019 2nd International Conference on High Voltage Engineering and Power Systems (ICHVEPS) - Denpasar, Bali, Indonesia (2019.10.1-2019.10.4)] 2019 2nd International Conference on High Voltage Engineering and Power Systems (ICHVEPS) - Synchronous Generator Stability Investigation in Power System with High-Penetration Photovoltaics Under Varying Solar Irradiances
摘要: While relay-based cooperative networks (widely known in the literature as cooperative communication), where relays only forward signals from the sources to the destination, have been extensively researched, fully cooperative systems have not been thoroughly examined. Unlike relay networks, in a fully cooperative network, each node acts as both a source node sending its own data and a relay forwarding its partner’s data to the destination. Mutual cooperation between neighboring nodes is believed to improve the overall system error performance, especially when space-time codes are incorporated. However, a comprehensive performance analysis of space-time-coded fully cooperative communication from all three perspectives, namely error performance, outage probability, and energy efficiency, is still missing. Answers to the commonly asked questions of whether, in what conditions, and to what extent the space-time-coded fully cooperative communication is better than direct transmission are still unknown. Motivated by this fact and inspired by the increasing popularity of healthcare applications in wireless body area networks (WBANs), this paper derives for the first time a comprehensive performance analysis of a decode-and-forward space-time coded fully cooperative communication network in Rayleigh and Rician fading channels in either identically or non-identically distributed fading scenario. Numerical analysis of error performance, outage probability, and energy efficiency, validated by simulations, show that fully cooperative communication is better than direct transmission from all three aspects in many cases, especially at a low-power and low signal-to-noise ratio regime, which is a typical working condition in WBANs.
关键词: Rayleigh,symbol error rates,MIMO,outage probability,Rician,decode-and-forward,energy efficiency,Cooperative communication,wireless body area networks,space-time codes
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - A new approach for Multi junction solar cells from off the shelf individual cells: GaAs/Si
摘要: Interference is one of the major obstacles to improving the performance in wireless communication systems. As the ever-growing data traffic is carried over extremely dense networks, how to deal with interference becomes even more relevant. In this paper, we investigate a network with N pairs of users transmitting on the same channel simultaneously from the energy efficiency (EE) perspective. For such an interference network, we aim to address two issues: what is the EE tradeoff between users and how to design energy-efficient resource allocation scheme? To answer these two questions, we formulate a non-concave multi-objective optimization problem (MOOP) to investigate the EE tradeoff, taking into account the minimum data rate requirement of each user. The weighted Tchebycheff method is utilized to solve the MOOP by converting it into a single-objective optimization problem, which is then solved by the Dinkelbach method and the concave-convex procedure method. Based on the above, a power control algorithm is developed for the interference network to achieve at least a local optimum. The proposed algorithm is compared with the orthogonal bandwidth sharing, where each user orthogonally shares the whole bandwidth without interfering each other. In this scenario, the weighted Tchebycheff and the Dinkelbach methods are also utilized to develop the optimal bandwidth allocation and power control algorithm. The performance of the proposed algorithms is verified by numerical results, which show that it is better to share the bandwidth orthogonally rather than non-orthogonally if the interference between each user pair is stronger than a given threshold.
关键词: multi-objective optimization,energy efficiency,Interference channel,bandwidth allocation and power control
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - The Electrochemical Reactions in Crystalline Silicon Solar Modules
摘要: Millimeter-wave (mmWave) communication operated in frequency bands between 30 and 300 GHz has attracted extensive attention due to the potential ability of offering orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multi-element antenna arrays. mmwave system may exploit the hybrid analog and digital precoding to achieve simultaneously the diversity, array and multiplexing gain with a lower cost of implementation. Motivated by this, in this paper, we investigate the design of hybrid precoder and combiner with sub-connected architecture, where each radio frequency chain is connected to only a subset of base station antennas from the perspective of energy efficient transmission. The problem of interest is a non-convex and NP-hard problem that is difficult to solve directly. In order to address it, we resort to design a two-layer optimization method to solve the problem of interest by exploiting jointly the interference alignment and fractional programming. First, the analog precoder and combiner are optimized via the alternating-direction optimization method where the phase shifter can be easily adjusted with an analytical structure. Then, we optimize the digital precoder and combiner based on an effective multiple-input multiple-output channel coefficient. The convergence of the proposed algorithms is proved using the monotonic boundary theorem and fractional programming theory. Extensive simulation results are given to validate the effectiveness of the presented method and to evaluate the energy efficiency performance under various system configurations.
关键词: Millimeter-wave communication,energy efficiency,interference alignment,analog precoding and combining,multiple-input multiple-output (MIMO) system
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Modulation of Conductivity in Manganese Vanadium Oxide
摘要: Cloud radio access network (C-RAN) and massive multiple-input multiple-output (MIMO) are recognized as two key technologies for the fifth-generation mobile networks. In this paper, we consider the energy efficiency-based user association problem in massive MIMO empowered C-RAN, where multiple antennae are clustered at each remote radio head (RRH). We first obtain the deterministic equivalent expression of the energy efficiency, and then propose three user association algorithms, named nearest-based user association (NBUA), single-candidate RRH user association (SCRUA), and multi-candidate RRHs user association (MCRUA), respectively. In NBUA and SCRUA, each user is associated with only one RRH, and in MCRUA, multiple RRHs can serve the same user. In our algorithms, the impact of the power consumption of fronthaul links and antennas is considered by allowing inefficient RRHs to be turned into sleep mode. We provide the numerical comparisons of the proposed algorithms and a state-of-the-art baseline, which associates each user with the nearest RRH. The results show that our proposed algorithms achieve higher energy efficiency than the baseline algorithm. The proposed MCRUA algorithm achieves a good balance between spectral and energy efficiency, and the performance gain is more significant when the number of users is large.
关键词: Cloud radio access networks,energy efficiency,massive MIMO,user association
更新于2025-09-19 17:13:59
-
[IEEE 2019 Chinese Control Conference (CCC) - Guangzhou, China (2019.7.27-2019.7.30)] 2019 Chinese Control Conference (CCC) - Multi-point Laser Automatic Oblique Angle Shooting Correction System Based on Image Processing
摘要: As green communication becomes an inevitable trend for future 5G wireless networks, how to maximize the energy efficiency (EE) of device-to-device (D2D) communication has drawn extensive attention recently. However, most of existing works only optimize the EE in the single-cell scenario, while little attention is paid to maximizing the EE of the whole cellular network underlaid with D2D communication with randomly distributed users on multiple bands. In this paper, we first consider the whole cellular network underlaid with D2D communication on multiple bands and derive the exact expressions of the successful transmission probabilities, the average sum rate and the EE based on stochastic geometry theory. Then, we formulate the optimization problem of maximizing the EE subject to four constraints regarding to transmission power and outage probabilities, and the non-convexity of this problem is also verified. After that, by exploiting the objective function property of being the sum of several functions, we propose a derivative-based algorithm to solve this non-convex optimization problem. Our theoretical analysis shows that the computational complexity of the proposed algorithm is significantly lower than that of the conventional branch and bound algorithm. Finally, simulation results demonstrate that the proposed algorithm can achieve the near-optimal EE with much better performance than the conventional algorithm.
关键词: energy efficiency,5G,D2D communication,stochastic geometry
更新于2025-09-19 17:13:59
-
[IEEE 2019 21st International Middle East Power Systems Conference (MEPCON) - Cairo, Egypt (2019.12.17-2019.12.19)] 2019 21st International Middle East Power Systems Conference (MEPCON) - Optimal Allocation for Photovoltaic/ Wind Turbine Applying A Hybrid Butterfly Genetic Algorithm
摘要: To achieve insights about the impact of amplified loop interference, we consider a dual-hop full-duplex (FD) massive multiple-input multiple-output (MIMO) amplify-and-forward (AF) relaying system in terms of achievable ergodic rates for each user pair as well as spectrum and energy efficiencies. It is assumed that the base station (or relay) is equipped with MRx receive antennas and MTx transmit antennas, while all sources and destinations have a single antenna. For such FD massive MIMO AF relaying systems, the closed-form expressions of the lower bounds of achievable ergodic rates are derived first with a finite number of receive and transmit antennas at base station. Then, the asymptotic performance analysis is performed by considering three different power-scaling schemes: 1) PS = ES /MRx and PR = ER; 2) PS = ES and PR = ER/MTx; and 3) PS = ES /MRx and PR = ER/MTx, where ES and ER are fixed, and PS and PR denote the transmit powers of each source and relay, respectively. Our results show that only when the power-scaling 2) is utilized, do the FD massive MIMO AF relay systems have the ability to restrict the loop interference, so that the system performance is free of loop interference when the number of antennas at the relay is large enough. On the contrary, with the power-scaling cases 1) and 3), the systems have no ability to cancel the loop interference even if MRx or MTx (or both) goes to infinity. The insight is different from the results in the FD massive MIMO decode-and-forward relaying systems where the loop interference can be entirely eliminated for the three power-scaling cases.
关键词: relay,Full-duplex,massive MIMO,energy efficiency,amplify-and-forward,ergodic rates
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS) - Portland, OR, USA (2019.10.14-2019.10.16)] 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS) - Single-Mode Fiber Coupling with Adaptive Optics for Free-Space Optical Communication under Strong Scintillation
摘要: A joint optimization problem of link-layer energy efficiency (EE) and effective capacity (EC) in a Nakagami-m fading channel under a delay-outage probability constraint and an average transmit power constraint is considered and investigated in this paper. First, a normalized multi-objective optimization problem (MOP) is formulated and transformed into a single-objective optimization problem (SOP), by applying the weighted sum method. The formulated SOP is then proved to be continuously differentiable and strictly quasiconvex in the optimum average input power, which turns out to be a cup shape curve. Furthermore, the weighted quasiconvex tradeoff problem is solved by first using Charnes–Cooper transformation and then applying Karush–Kuhn–Tucker (KKT) conditions. The proposed optimal power allocation, which includes the optimal strategy for the link-layer EE-maximization problem and the EC-maximization problem as extreme cases, is proved to be sufficient for the Pareto optimal set of the original EE–EC MOP. Moreover, we prove that the optimum average power level monotonically decreases with the importance weight, but strictly increases with the normalization factor, the circuit power and the power amplifier efficiency. Simulation results confirm the analytical derivations and further show the effects of fading severeness and transmission power limit on the tradeoff performance.
关键词: energy efficiency,delay-outage probability constraint,multi-objective optimization problem,effective capacity,Quality-of-service,weighted sum method
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Improved Field Evaluation of Reference Cell Using Spectral Measurements
摘要: The dramatic growth of mobile multimedia communications imposes new requirements on quality-of-service and energy efficiency in wireless networks. In this paper, we study the energy- and spectrum-efficient cooperative communication (ESCC) problem by exploiting the benefits of cooperative communication (CC) for mobile multimedia applications in multi-channel wireless networks. In a static network, it is formulated as a mixed-integer nonlinear programming problem. To solve this problem, we use linearization and reformulation techniques to transform it into a mixed-integer linear programming problem that is solved by a branch-and-bound algorithm with enhanced performance. To deal with the problem in dynamic networks, we propose an online algorithm with low computational complexity and deployment overhead. Extensive simulations are conducted to show that the proposed algorithm can significantly improve the performance of energy efficiency in both static and dynamic networks.
关键词: optimization,cooperative communication,online algorithm,multi-channel,Energy efficiency
更新于2025-09-19 17:13:59