修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

105 条数据
?? 中文(中国)
  • [IEEE 2019 IEEE Sustainable Power and Energy Conference (iSPEC) - Beijing, China (2019.11.21-2019.11.23)] 2019 IEEE Sustainable Power and Energy Conference (iSPEC) - Accessing Capacity Planning of Distributed Generations Considering the Temporal Correlation Characteristics of Wind-Photovoltaic-Load

    摘要: Interference is one of the major obstacles to improving the performance in wireless communication systems. As the ever-growing data traffic is carried over extremely dense networks, how to deal with interference becomes even more relevant. In this paper, we investigate a network with N pairs of users transmitting on the same channel simultaneously from the energy efficiency (EE) perspective. For such an interference network, we aim to address two issues: what is the EE tradeoff between users and how to design energy-efficient resource allocation scheme? To answer these two questions, we formulate a non-concave multi-objective optimization problem (MOOP) to investigate the EE tradeoff, taking into account the minimum data rate requirement of each user. The weighted Tchebycheff method is utilized to solve the MOOP by converting it into a single-objective optimization problem, which is then solved by the Dinkelbach method and the concave-convex procedure method. Based on the above, a power control algorithm is developed for the interference network to achieve at least a local optimum. The proposed algorithm is compared with the orthogonal bandwidth sharing, where each user orthogonally shares the whole bandwidth without interfering each other. In this scenario, the weighted Tchebycheff and the Dinkelbach methods are also utilized to develop the optimal bandwidth allocation and power control algorithm. The performance of the proposed algorithms is verified by numerical results, which show that it is better to share the bandwidth orthogonally rather than non-orthogonally if the interference between each user pair is stronger than a given threshold.

    关键词: multi-objective optimization,energy efficiency,Interference channel,bandwidth allocation and power control

    更新于2025-09-19 17:13:59

  • [IEEE 2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO) - Russia (2019.7.1-2019.7.3)] 2019 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO) - Experimental Researches of the Macrobend Effect of Optical Fibers on Brillouin Traces

    摘要: The network densi?cation of small cells (SCs) is a promising way to cope with the explosive growth of future traf?c demands in 5G networks. However, the overall power consumption and the backhaul limitation of the network have become the key factors affecting the network performance and users’ quality-of-experience, which have great importance in 5G wireless networks. Due to the complexity of 5G networks and the variety of user behaviors, the combination of software-de?ned networks and content delivery strategy could be a more ef?cient way to manage such networks. In this paper, a cache-enabled wireless heterogeneous network with the control-plane (C-plane) and user-plane (U -plane) split is proposed, where the macro cell and SCs with different cache abilities are overlaid and cooperated together in the backhaul scenario. Using an evaluation tool composed of stochastic processes and classical power consumption model, key performance indicators, e.g., the coverage probability, throughput, and energy ef?ciency (EE), are derived as closed-form expressions or the functions of the signal-to-interference-plus-noise ratio threshold, path loss exponent, transmission power and density of macro and SCs, cache ability, ?le popularity, and backhaul capacity. Fundamental trade-offs are illustrated between EE and transmission power, EE and SC density, as well as the throughput and density of SCs. Numerical results show that the proposed cache-enabled software-de?ned networks have much higher throughput and improved EE than current LTE networks, which shows a promising solution for future cellular networks.

    关键词: software defined networks,green communications,coverage probability,trade-off,Cache-enabled networks,spectral and energy efficiency

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC) - Singapore, Singapore (2019.12.4-2019.12.6)] 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC) - A new substrate for realizing hemispherical encapsulant layer to enhance light efficiency of light-emitting diodes

    摘要: A joint optimization problem of link-layer energy efficiency (EE) and effective capacity (EC) in a Nakagami-m fading channel under a delay-outage probability constraint and an average transmit power constraint is considered and investigated in this paper. First, a normalized multi-objective optimization problem (MOP) is formulated and transformed into a single-objective optimization problem (SOP), by applying the weighted sum method. The formulated SOP is then proved to be continuously differentiable and strictly quasiconvex in the optimum average input power, which turns out to be a cup shape curve. Furthermore, the weighted quasiconvex tradeoff problem is solved by first using Charnes–Cooper transformation and then applying Karush–Kuhn–Tucker (KKT) conditions. The proposed optimal power allocation, which includes the optimal strategy for the link-layer EE-maximization problem and the EC-maximization problem as extreme cases, is proved to be sufficient for the Pareto optimal set of the original EE–EC MOP. Moreover, we prove that the optimum average power level monotonically decreases with the importance weight, but strictly increases with the normalization factor, the circuit power and the power amplifier efficiency. Simulation results confirm the analytical derivations and further show the effects of fading severeness and transmission power limit on the tradeoff performance.

    关键词: energy efficiency,weighted sum method,delay-outage probability constraint,Quality-of-service,effective capacity,multi-objective optimization problem

    更新于2025-09-19 17:13:59

  • [IEEE 2019 24th Microoptics Conference (MOC) - Toyama, Japan (2019.11.17-2019.11.20)] 2019 24th Microoptics Conference (MOC) - The Surface Emitting Laser Turned of Light: Everybody Has It

    摘要: Rule induction is a practical approach to knowledge discovery. Provided that a problem is developed, rule induction is able to return the knowledge that addresses the goal of this problem as if-then rules. The primary goals of knowledge discovery are for prediction and description. The rule format knowledge representation is easily understandable so as to enable users to make decisions. This paper presents the potential of rule induction for energy efficiency. In particular, three rule induction techniques are applied to derive knowledge from a dataset of thousands of Irish electricity customers’ time-series power consumption records, socio-demographic details, and other information, in order to address the following four problems: 1) discovering mathematically interesting knowledge that could be found useful; 2) estimating power consumption features for customers, so that personalized tariffs can be assigned; 3) targeting a subgroup of customers with high potential for peak demand shifting; and 4) identifying customer attitudes that dominate energy conservation.

    关键词: smart grids,Energy efficiency,knowledge discovery,subgroup discovery

    更新于2025-09-19 17:13:59

  • Quantitative trade-off analysis of infrared light absorber effects contributed to photovoltaic cells performance

    摘要: It is widely known that organic and inorganic coatings absorb more of the solar spectrum, and due to a considerable share of 45% infrared radiation, the energy efficiency drop by the increasing of temperature should be considered. The purpose of this study is to implement a system to characterize silicon solar cell performance and increasing energy efficiency by imposing such coatings as infrared wave absorber to overcome the Shockley–Queisser limit. In other words, this research efforts to improve cell efficiency (coating effects) in addition to imposing the efficiency decreasing effects (temperature increasing). The core of the study is laboratory and experimental set-up measurements to find an organic absorber with the highest absorbance. Ruthenium-based dye, N719, has shown the best performance in experimental conditions and heat extraction to enhance cell energy efficiency. Due to increased absorption in a solar cell (SC), to control the temperature rise of the system, the fan is used as a cooling system. The imposing of N719 results in increasing energy efficiency by up to 1.38%. It is worth noting that a 1.60% increase in energy efficiency is observed due to temperature reduction by 2 degrees.

    关键词: Experimental set-up,Photovoltaic cell,Organic absorbent N719,Cooling system,Energy efficiency

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Effect of irradiance data on the optimal sizing of photovoltaic water pumping systems

    摘要: Cloud radio access network (C-RAN) and massive multiple-input multiple-output (MIMO) are recognized as two key technologies for the fifth-generation mobile networks. In this paper, we consider the energy efficiency-based user association problem in massive MIMO empowered C-RAN, where multiple antennae are clustered at each remote radio head (RRH). We first obtain the deterministic equivalent expression of the energy efficiency, and then propose three user association algorithms, named nearest-based user association (NBUA), single-candidate RRH user association (SCRUA), and multi-candidate RRHs user association (MCRUA), respectively. In NBUA and SCRUA, each user is associated with only one RRH, and in MCRUA, multiple RRHs can serve the same user. In our algorithms, the impact of the power consumption of fronthaul links and antennas is considered by allowing inefficient RRHs to be turned into sleep mode. We provide the numerical comparisons of the proposed algorithms and a state-of-the-art baseline, which associates each user with the nearest RRH. The results show that our proposed algorithms achieve higher energy efficiency than the baseline algorithm. The proposed MCRUA algorithm achieves a good balance between spectral and energy efficiency, and the performance gain is more significant when the number of users is large.

    关键词: user association,Cloud radio access networks,energy efficiency,massive MIMO

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) - Xi'an, China (2019.6.12-2019.6.14)] 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) - Enhancement of Light Harvesting for Organic Solar Cells via Halogenated (Sub-)Phthalocyanines and Fullerene

    摘要: The dramatic growth of mobile multimedia communications imposes new requirements on quality-of-service and energy efficiency in wireless networks. In this paper, we study the energy- and spectrum-efficient cooperative communication (ESCC) problem by exploiting the benefits of cooperative communication (CC) for mobile multimedia applications in multi-channel wireless networks. In a static network, it is formulated as a mixed-integer nonlinear programming problem. To solve this problem, we use linearization and reformulation techniques to transform it into a mixed-integer linear programming problem that is solved by a branch-and-bound algorithm with enhanced performance. To deal with the problem in dynamic networks, we propose an online algorithm with low computational complexity and deployment overhead. Extensive simulations are conducted to show that the proposed algorithm can significantly improve the performance of energy efficiency in both static and dynamic networks.

    关键词: online algorithm,cooperative communication,multi-channel,Energy efficiency,optimization

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) - Westminster, CO, USA (2019.11.4-2019.11.7)] 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) - Task Mapping-Assisted Laser Power Scaling for Optical Network-on-Chips

    摘要: Energy ef?ciency of an optical network-on-chip (ONoC) largely relies on an effective laser power management strategy. Addressing the limitations of existing techniques, we propose a Task Mapping-Assisted Laser Power Scaling (TMALPS) framework to optimize the energy consumption and the application execution time of an ONoC. Through the combination of task mapping exploration and runtime laser power recon?guration applied to a wide range of application benchmarks, our TMALPS framework achieves an average of 66% saving of the energy-delay product, compared to a baseline scenario where the optimization techniques are not applied. Signi?cant improvement over existing techniques was also observed. The hardware overhead required to support our TMALPS framework is minimal with intelligent reuse of existing on-chip hardware resource.

    关键词: task mapping,energy efficiency,laser power management,optical network-on-chip

    更新于2025-09-19 17:13:59

  • [IEEE 2019 International Conference on Optical MEMS and Nanophotonics (OMN) - Daejeon, Korea (South) (2019.7.28-2019.8.1)] 2019 International Conference on Optical MEMS and Nanophotonics (OMN) - Room-temperature bonding of organic films using ultrathin Au intermediate layers for organic integrated optical devices

    摘要: Powering cellular base stations with renewable energy are one of the long-term strategies for achieving green networks and reducing their operational costs. As an energy provider, the power grid is evolving into a smarter one, which allows more energy-efficient cellular networks and enables cooperation and interaction with the smart grid. On one hand, cellular networks can use harvested renewable energy and on-site energy storage to reduce their energy costs. On the other hand, the price of electricity depends on the energy load, which will eventually contribute to decreasing the peak consumption and global energy cost. In this paper, we propose new integration architecture for renewable energy-powered cellular networks and the smart grid. The proposed architecture is designed based on the classification and the analysis of the existing proposals and the requirements of the smart grid, renewable energy systems, and cellular networks.

    关键词: energy efficiency,integration architecture,Cellular networks,smart grid,renewable energy

    更新于2025-09-16 10:30:52

  • [IEEE 2019 24th Microoptics Conference (MOC) - Toyama, Japan (2019.11.17-2019.11.20)] 2019 24th Microoptics Conference (MOC) - Infrared LED Marker for Target Recognition in Optical Wireless Power Transmission to Moving Object at Dark Environment Condition

    摘要: We investigate instantaneous transmission rate strategies for secondary users in cognitive radio networks by analyzing their effective capacity performance in different signal-to-noise ratio regimes with different quality-of-service constraints and transmission block sizes. Describing a channel model with one secondary transmitter and one secondary receiver with the potential presence of primary users, we present an interference power constraint that limits the transmission power of secondary users not only when a channel is sensed as busy but also when a channel is sensed as idle. Calling the existing transmission rate strategy Optimistic Policy, we introduce two other strategies, particularly Conservative Policy and Greedy Policy. Secondary users in Optimistic Policy set the instantaneous transmission rate to the instantaneous mutual information assuming the correctness of channel sensing results, whereas they set the instantaneous transmission rate to the instantaneous mutual information regarding possible transmission outages in Conservative Policy and disregarding possible transmission outages in Greedy Policy. We construct a state transition diagram and formulate the effective capacity employing these policies. We calculate the minimum energy-per-bit requirements and the high signal-to-noise ratio slope in order to explore performance variations in low and high signal-to-noise ratio regimes, respectively. Correspondingly, we show that Optimistic Policy is, in general, more favorable in secondary users when the quality-of-service constraints are loose, the transmission blocks are shorter, and the signal-to-noise ratio is low. On the other hand, Conservative Policy is better when the quality-of-service constraints are strict, the transmission blocks are longer, and the signal-to-noise ratio is high.

    关键词: transmission rate,energy efficiency,minimum energy-per-bit,Cognitive radio,channel uncertainty,interference power constraints,effective capacity,channel sensing,high signal-to-noise ratio slope

    更新于2025-09-16 10:30:52