- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Preparation of Bi<sub>2</sub>Gd<sub>1</sub>Fe<sub>5</sub>O<sub>12</sub> magnetic garnet films showing Faraday rotation of 36.3 deg./μm on glass substrates by metal organic decomposition method
摘要: We fabricated the Bi2Gd1Fe5O12 thin films on glass substrates with the Gd3Fe5O12 buffer layer by the metal organic decomposition (MOD) method. We found an optimum thickness of the Gd3Fe5O12 buffer layer and annealing temperature for crystallization giving the maximum Faraday rotation. The optimum sample showed Faraday rotation of as high as 36.3 deg./μm at the wavelength λ = 500 nm, which is 23 times larger than the sample without the Gd3Fe5O12 buffer layer, and as high as 90.1% of the single crystalline Bi2Gd1Fe5O12 thin films on an (111) SGGG single crystal substrate. These results are promising for applications in optical waveguide isolators and magneto-optic spatial light modulators.
关键词: metal organic decomposition,crystallization process,Faraday rotation,photonic integrated circuits,magnetic garnet
更新于2025-09-23 15:23:52
-
Retrieval of Ionospheric Faraday Rotation Angle in Low-frequency Polarimetric SAR Data
摘要: A low-frequency spaceborne synthetic aperture radar (SAR) working system, e.g., operating at the L-band or P-band, has great advantages of military target detection and biomass monitoring. Nevertheless, it is more susceptible to ionospheric effects compared with the higher frequency system. A trans-ionospheric wave propagation model is established in this paper to incorporate ionospheric effects on SAR signals. As one of the signi?cant distortion sources for the polarimetric SAR (PolSAR), Faraday rotation (FR) is mainly imposed by background ionosphere, and its spatial variation is discussed. FR estimators have been devised in succession to estimate FR angle (FRA), and various potential novel estimators can still be derived. But, from a viewpoint of theoretical expressions, the earliest estimator is bound to be the optimal one. Based on PolSAR real data, this mathematical conclusion is further validated via comprehensive performance analysis as to estimation bias and standard deviation rather than the existent root-mean-square principle. Finally, a step-by-step procedure of the FRA map is proposed and operated with an application of the airborne P-band PolSAR data. In particular, the ambiguity error of FRA estimates within a SAR observation is simulated and resolved. By processing the ALOS-2 real data, the spatial distribution of FRAs is retrieved and used to operate ionospheric total electron content soundings.
关键词: FR angle (FRA) map,ionospheric TEC soundings,Faraday rotation (FR) estimators,Spaceborne synthetic aperture radar (SAR)
更新于2025-09-23 15:23:52
-
[IEEE 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA) - Manizales, Colombia (2019.5.30-2019.5.31)] 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA) - Determination and Performance Analysis of the Norton Equivalent Models for Fluorescents and LED Recessed Lightings
摘要: For long-wavelength space-based radars, such as the P-band radar on the recently selected European Space Agency BIOMASS mission, system distortions (crosstalk and channel imbalance), Faraday rotation, and system noise all combine to degrade the measurements. A first-order analysis of these effects on the measurements of the polarimetric scattering matrix is used to derive differentiable expressions for the errors in the polarimetric backscattering coefficients in the presence of Faraday rotation. Both the amplitudes and phases of the distortion terms are shown to be important in determining the errors and their maximum values. Exact simulations confirm the accuracy and predictions of the first-order analysis. Under an assumed power-law relation between σhv and the biomass, the system distortions and noise are converted into biomass estimation errors, and it is shown that the magnitude of the deviation of the channel imbalance from unity must be 4–5 dB less than the crosstalk, or it will dominate the error in the biomass. For uncalibrated data and midrange values of biomass, the crosstalk must be less than ?24 dB if the maximum possible error in the biomass is to be within 20% of its true value. A less stringent condition applies if the amplitudes and phases of the distortion terms are considered random since errors near the maximum possible are very unlikely. For lower values of the biomass, the noise becomes increasingly important because the σhv signal-to-noise ratio is smaller.
关键词: Biomass,Faraday rotation,polarimetric measurements,system distortion,calibration,long-wavelength radar
更新于2025-09-23 15:21:01
-
[IEEE 2020 IEEE International Solid- State Circuits Conference - (ISSCC) - San Francisco, CA, USA (2020.2.16-2020.2.20)] 2020 IEEE International Solid- State Circuits Conference - (ISSCC) - 19.2 A 110mK 295?μW 28nm FDSOI CMOS Quantum Integrated Circuit with a 2.8GHz Excitation and nA Current Sensing of an On-Chip Double Quantum Dot
摘要: An electromagnetic wave propagating through the ionosphere is subject to path delay and the depolarizing effect of Faraday rotation, both of which are dependent on global position and geometry. These effects introduce error and consequently reduce the range resolution of remote sensing polarimetric measurements. Satellite-to-ground communications may be adversely altered by these effects so as to inhibit signal reception. The work presented here introduces a simple vectorized model for a large-field-of-view, low-Earth-orbit, satellite system that yields Faraday rotation and path delay according to global position and geometric parameters. Comparison is made with current models, through the simulation of Faraday rotation and path delay. The presented work may extend the range over which Faraday rotation and path delay estimation are reliable. The work presented forms part of a large-field-of-view, low-Earth-orbit satellite model exploiting multiple-input multiple-output polarimetry in three dimensions.
关键词: remote sensing,Faraday rotation,ionosphere,path delay,satellite communications
更新于2025-09-23 15:19:57
-
Enhancement of magneto-optical properties in magnetic photonic crystal slab waveguide based on yttrium iron garnet
摘要: In this work, a polarization-independent waveguide based on magnetic photonic crystal (MPC) with a triangular lattice of air holes in Yttrium Iron Garnet (YIG) slab grown on alumina (Al2O3) substrate is proposed, where both TE-like and TM-like periodic band gaps overlap. YIG is well known for its attracting magneto-optical (MO) properties and used to produce a coupling between the TE and TM modes. Thus, a nonreciprocal effect can be obtained by applying an external magnetic field parallel to the direction of propagation. At 1550 nm, the complete photonic band gap is simulated and optimized using the three dimensional plane-wave expansion method. The aim of this study is to enhance Faraday rotation (FR) while maintaining a low modal birefringence. A numerical analysis in function of magnetic gyration (g) has been reported, using the BeamProp software. The results reveal a proportional relation between FR, ?n and g, such for g = 0.5, a large FR of 26.11×104 °/cm with ?n = 7×10–6. The results show a real improvement of this MPC structure based on YIG with larger FR, lower modal birefringence and minimal losses. The notable enhancement in the MO behaviour could improve the performance of optical isolators, and makes it suitable for nonreciprocal devices.
关键词: modal birefringence,magneto-optical properties,Yttrium Iron Garnet,Faraday rotation,magnetic photonic crystal
更新于2025-09-23 15:19:57
-
[IEEE 2019 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific) - Seogwipo-si, Korea (South) (2019.5.8-2019.5.10)] 2019 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific) - Optimal scheduling of critical peak pricing considering photovoltaic generation and electric vehicle load
摘要: For long-wavelength space-based radars, such as the P-band radar on the recently selected European Space Agency BIOMASS mission, system distortions (crosstalk and channel imbalance), Faraday rotation, and system noise all combine to degrade the measurements. A first-order analysis of these effects on the measurements of the polarimetric scattering matrix is used to derive differentiable expressions for the errors in the polarimetric backscattering coefficients in the presence of Faraday rotation. Both the amplitudes and phases of the distortion terms are shown to be important in determining the errors and their maximum values. Exact simulations confirm the accuracy and predictions of the first-order analysis. Under an assumed power-law relation between σhv and the biomass, the system distortions and noise are converted into biomass estimation errors, and it is shown that the magnitude of the deviation of the channel imbalance from unity must be 4–5 dB less than the crosstalk, or it will dominate the error in the biomass. For uncalibrated data and midrange values of biomass, the crosstalk must be less than ?24 dB if the maximum possible error in the biomass is to be within 20% of its true value. A less stringent condition applies if the amplitudes and phases of the distortion terms are considered random since errors near the maximum possible are very unlikely. For lower values of the biomass, the noise becomes increasingly important because the σhv signal-to-noise ratio is smaller.
关键词: Biomass,Faraday rotation,polarimetric measurements,system distortion,calibration,long-wavelength radar
更新于2025-09-23 15:19:57
-
Modal Analysis of 2-D Material-based Plasmonic Waveguides by Mixed Spectral Element Method with Equivalent Boundary Condition
摘要: For long-wavelength space-based radars, such as the P-band radar on the recently selected European Space Agency BIOMASS mission, system distortions (crosstalk and channel imbalance), Faraday rotation, and system noise all combine to degrade the measurements. A first-order analysis of these effects on the measurements of the polarimetric scattering matrix is used to derive differentiable expressions for the errors in the polarimetric backscattering coefficients in the presence of Faraday rotation. Both the amplitudes and phases of the distortion terms are shown to be important in determining the errors and their maximum values. Exact simulations confirm the accuracy and predictions of the first-order analysis. Under an assumed power-law relation between σhv and the biomass, the system distortions and noise are converted into biomass estimation errors, and it is shown that the magnitude of the deviation of the channel imbalance from unity must be 4–5 dB less than the crosstalk, or it will dominate the error in the biomass. For uncalibrated data and midrange values of biomass, the crosstalk must be less than ?24 dB if the maximum possible error in the biomass is to be within 20% of its true value. A less stringent condition applies if the amplitudes and phases of the distortion terms are considered random since errors near the maximum possible are very unlikely. For lower values of the biomass, the noise becomes increasingly important because the σhv signal-to-noise ratio is smaller.
关键词: Biomass,Faraday rotation,polarimetric measurements,system distortion,calibration,long-wavelength radar
更新于2025-09-23 15:19:57
-
Study of laser-driven magnetic fields with a continuous wave Faraday rotation diagnostic
摘要: Magnetic ?elds driven by a laser in coil targets were studied for laser energies of (cid:2)25 J and two pulse durations of 2.8 ns and 70 ps. Axial magnetic ?elds in the coils were measured by continuous wave Faraday rotation diagnostics. The diagnostics indicated magnetic ?elds of 6–14 T in the coil and currents of 10–20 kA. Magnetic ?elds were compared for similar laser targets, focusing conditions, and laser energies. A 30-times increase in the intensity of the laser beam by reducing the pulse duration resulted in an increase in the magnetic ?eld and current by a factor of 2. The relaxation time of the magnetic pulse was on the sub-microsecond scale.
关键词: coil targets,magnetic field measurement,laser-driven magnetic fields,pulse duration,Faraday rotation diagnostics
更新于2025-09-19 17:13:59
-
Time-resolved laser-flash photolysis Faraday rotation spectrometer: a new tool for total OH reactivity measurement and free radical kinetics research
摘要: The total OH reactivity (k’OH) is an important parameter for quantitative assessment of the atmospheric oxidation capacity. Although laboratory measurement of k’OH has been achieved 20 years ago, the instruments required are often costly and complex. Long-term atmospheric observations remain challenging and elusive. In this work, a novel instrument combining laser-flash photolysis with a mid-infrared Faraday rotation spectrometer (LFP-FRS) has been developed for the measurement of k’OH and for studying gas phase free radical kinetics. The reactor is composed of a Herriott-type optical multipass cell, and OH radicals were generated by flash photolysis of ozone with a 266 nm pulsed Nd:YAG laser. The decay of the OH signal was directly measured with a time-resolved FRS spectrometer at 2.8 μm. The overlapping pathlength between the pump beam and probe beam was 25 m. High performance was achieved by subtracting the signals before and after flash photolysis to eliminate interferences caused by H2O absorption and background drift. The optimum precisions (1σ) of OH concentration and k’OH measurement were 4×106 molecule cm-3 and 0.09 s-1 over data acquisition times of 56 s and 112 s, respectively. The performance of the system was evaluated by the reaction of OH with CO and NO. The measured rate coefficients (kOH+CO and kOH+NO) were in good agreement with values reported in the literature. The developed LFP-FRS provides a new, high precision, and highly selective tool for atmospheric chemistry research of OH radicals and other transient paramagnetic free radicals such as HO2 radicals.
关键词: atmospheric oxidation capacity,total OH reactivity,laser-flash photolysis,free radical kinetics,Faraday rotation spectrometer
更新于2025-09-19 17:13:59
-
Characterisation of spectroscopic and magneto-optical faraday rotation in Mn2+- doped CdS quantum dots in a silicate glass
摘要: We demonstrate the control of CdS and Mn2+-doped-CdS Q-dots in a silicate glass for magneto-optical applications. The microstructural properties of Q-dot glasses were investigated by X-Ray diffraction (XRD), Field Emission Transmission Electron Microscopy (FETEM) and the optical properties by UV-Visible-NIR and Photoluminescence (PL) spectroscopic techniques, respectively. The FETEM of the CdS QD–glass heat treated at 600oC reveals that the size of CdS and Mn2+-doped CdS Q-dots are in the range of 4-5 nm and 5-6nm, respectively. The observed size distributions of Q-dots were in reasonable agreement with the data, derived from X-ray line broadening and estimated average Bohr radii using the UV-visible absorption data. Photoluminescence characteristics were investigated at room temperature by exciting the CdS and Mn2+-doped-CdS Q-dot glasses with a 420 nm excitation source, which yielded broad emission spectra in the visible and near-IR range (450-800nm). We observed a red shift in the emission peak with increase in the Q-dot size, controlled by heat treatment temperature range (550-600oC). The room-temperature magneto-optical Faraday rotation measurements on Q-dots glasses were carried out using magnetic field strength up to 360 mT, and observed an increase in the value of Verdet constant, from 6.2 to 12.0 degree/T-cm, when comparing undoped CdS-Q-dot glass with Mn2+-doped CdS glass. The demonstration of enhanced Verdet constant in Q-dot silicate glasses with sub-Tesla field paves the path for engineering range magneto-optical devices for photonics, spintronics and sensors applications, in which the polarisation of photons may be controlled with low-intensity magnetic field in optical waveguides.
关键词: Faraday rotation,Quantum dots CdS,Photoluminescence,Dichalcogenide glass,Magneto-optics
更新于2025-09-19 17:13:59