- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Growth control and defect passivation toward efficient and low-temperature processed carbon based CsPbIBr2 solar cell
摘要: All-inorganic perovskite CsPbIBr2, has drawn much attention for photovoltaic (PV) application due to its excellent intrinsic stability. However, low device performance and high fabrication temperature still hamper its further progress in flexible application. Herein, Zn substitution has been used to improve the nucleation and growth process for low temperature processed a-phase CsPbIBr2 film. Zn incorporated CsPbIBr2 film exhibits good crystallinity, compact surface morphology and depressed defect state. Low temperature (100 and 160°C) processed carbon based CsPbIBr2 solar cells with improved PV performance have been prepared by using Zn incorporation and room deposited electron transport layer (ETL). A champion efficiency over 9% can be achieved through Zn substitution, which is one of the best values reported for the low temperature processed CsPbIBr2 solar cell without using hole transport layer (HTL). Efficiency over 5% can also be achieved for larger area (1 cm2) rigid and flexible CsPbIBr2 solar cells. These results would provide a new route for preparing high-performance and low temperature processed inorganic perovskite solar cell.
关键词: Carbon electrode,CsPbIBr2,Flexible,Solar cell,Low temperature,Inorganic perovskite
更新于2025-09-23 15:21:01
-
Surface Engineering of Low-Temperature Processed Mesoporous TiO <sub/>2</sub> via Oxygen Plasma for Flexible Perovskite Solar Cells
摘要: A major problem in the application of mesoporous TiO2 as an electron transport layer for flexible perovskite solar cells is that a high temperature sintering process is required to remove organic additives from the TiO2 layer. A facile oxygen plasma process is herein demonstrated to fabricate mesoporous structured perovskite solar cells with significant photovoltaic performance at low temperatures. When the low-temperature processed TiO2 layer is modified via oxygen plasma, the organic additives in the TiO2 layer that hinder the charge transport process are successfully decomposed. The oxygen plasma treatment improves the wettability and infiltration of the perovskite layer and also passivates the oxygen vacancy related traps in TiO2. Hence, the oxygen plasma treatment evidently enhances charge extraction and transport, thereby improving photovoltaic performance and decreasing hysteresis.
关键词: Mesoporous TiO2,Flexible solar cell,Oxygen plasma,Low-temperature processed TiO2,Perovskite solar cell
更新于2025-09-23 15:19:57
-
Comparative study of optimised molybdenum back-contact deposition with different barriers (Ti, ZnO) on stainless steel substrate for flexible solar cell application
摘要: In this study, we optimised the molybdenum (Mo) back-contact layer for solar cell applications on stainless steel substrates using direct-current (dc) sputtering with varying sputtering powers (100 W to 500 W) and pressures (5 mTorr to 20 mTorr). We comparatively analysed the effectiveness of titanium (Ti) layer deposited using e-beam evaporation deposition and zinc oxide (ZnO) layer deposited using radio-frequency (RF) sputtering for barrier application with Mo. Structural characterisation of the optimised Mo films was carried out using XRD studies confirmed the (110) plane corresponding to the body-centred cubic (bcc) structure. Estimated Mo film parameters for films deposited on barrier layers were compared against films deposited on SS substrate without any barriers as these properties influence the prospective diffusion of Fe and Cr into the absorber layer. Surface characterisation of the deposited films was carried out using a scanning electron microscopy (SEM) to study the morphology of films, and energy-dispersive X-ray (EDX) to identify elemental presence to confirm the blockage of the impurities atoms through the film. Secondary ion mass spectroscopy (SIMS) was employed to study the depth profiles of films while atomic force microscopy (AFM) was used to characterise the topographical properties from the sputtered Mo film and analyse the grain properties of the films. A low resistivity value of 0.511 × 10–6 Ω m for Mo films on the reference glass substrate and 0.625 × 10–6 Ω m for the Mo film on ZnO barrier was measured using the four-point probe. We observed a further 40% reduction in impurities using annealed ZnO barrier combined with an optimised Mo layer.
关键词: flexible solar cell,stainless steel substrate,sputtering,barrier layers,molybdenum back-contact
更新于2025-09-23 15:19:57
-
Photovoltaic Solar Textiles
摘要: Solar cells are an option for powering active electronics on textiles, but should be fully integrated to avoid compromising the flexibility and handle of the basic fabric. Photovoltaic (PV) cells conventionally use rigid silicon wafers but there are also thin-film options, although some are sensitive to moisture and oxygen, and others require processing temperatures outside the range of most flexible materials. The coating on textiles is also influenced by the fabric’s texture, elasticity, and surface roughness. The demands of a flexible structure affect the choice of the other parts of PV cells, namely their electrical contacts and any encapsulation layers. The two alternative routes to a textile PV design are—(i) coat the fabric with successive layers needed to make a sandwich device, or (ii) coat individual yarns with these layers and then process them into a fabric, e.g., by weaving.
关键词: photovoltaic,flexible solar cell,textile
更新于2025-09-16 10:30:52
-
Planar‐type concentrating photovoltaics with cylindrical lenses directly integrated with thin flexible GaAs solar cells
摘要: Concentrated photovoltaics allow a reduction of expensive semiconductor materials by collecting incident light through optical elements such as lenses and/or mirrors, which usually require bulky or heavy dual‐axis solar trackers, requiring dedicated installation sites. In this paper, we report a planar‐type concentrating photovoltaics with cylindrical lenses on which flexible GaAs solar cells are directly integrated on the curvilinear surfaces. The planar‐type concentrating system maintains both a focused beam width and angle invariably onto its integrated solar cells throughout the day. Computational and experimental studies at various incident angles prove the benefits of the design. Demonstrations of a custom‐built cylindrical lens solar tracker installed on a rooftop or sidewall of a building prove the feasibility of the proposed concept.
关键词: solar tracker,flexible solar cell,cylindrical lens,concentrator photovoltaics (CPV),GaAs
更新于2025-09-12 10:27:22