- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Rapid and sensitive detection of formaldehyde using portable 2-dimensional gas chromatography equipped with photoionization detectors
摘要: We developed an automated and highly portable device for rapid and sensitive formaldehyde detection based on heart-cutting 2-dimensional gas chromatography. In this design, the air sample was first absorbed by a preconcentrator before it is injected into the 1st-dimensional column (Rtx?-VMS). The partial elution from the 1st-dimensional column containing formaldehyde was re-injected into the 2nd-dimensional column (Rt? Q-BOND column) for further separation. The detection of formaldehyde was achieved by using a micro-helium dielectric barrier discharge photoionization detector that is able to ionize formaldehyde (ionization potential = 10.88 eV). Due to the use of many miniaturized components, the entire system has a weight of only 1.3 kg (excluding the helium cartridge) and dimensions of only 27 cm x 24 cm x 12 cm. It is capable of detecting formaldehyde down to 0.5 ppb (V/V) with a signal-to-noise ratio of 6 in only 11 min (including 6 min of sampling). Meanwhile, simultaneous separation and detection of other air pollution related toxic compounds, such as benzene, toluene, ethylbenzene, and xylene, was also demonstrated by the 1-dimensional column and a flow-through micro-photoionization detector. The device developed here should have a broad range of applications in environmental protection, industries, space exploration, and battlefield.
关键词: Gas chromatography,Air quality control,Indoor air analysis,Photoionization detector,2D GC,Formaldehyde detection
更新于2025-09-23 15:23:52
-
Ppb-level formaldehyde detection system based on a 3.6???μm interband cascade laser and mode-locked cavity enhanced absorption spectroscopy with self-calibration of the locking frequency
摘要: A mid-infrared formaldehyde (H2CO) detection system was demonstrated using a continuous-wave distributed-feedback interband cascade laser (DFB-ICL) emitting at 3.6 μm as light source and an assembly F-P cavity with 20 m effective optical path length as gas chamber. The laser and the cavity were locked to the H2CO absorption peak simultaneously by an electro-optic modulation based automatic Pound-Drever-Hall (PDH) scheme which consist of two steps: dynamic PDH locking and continuous PDH locking. Before continuous PDH locking, the dynamic PDH locking was conducted to acquire the H2CO absorption spectrum and calibration the locking frequency. Then, the cavity transmitted intensity was detected continuously to characterize the gas concentration. H2CO measurements were conducted to evaluate the performance of the sensor system. A linear relationship was observed between the voltage of the absorption signal and the H2CO concentration within the range of 0–6 ppm. Based on Allan deviation analysis, a minimum detection limit of 5.8 ppb was achieved with an averaging time of 30 s.
关键词: Cavity enhanced absorption spectroscopy,Mid-infrared,Interband cascade laser,Formaldehyde detection
更新于2025-09-19 17:13:59
-
Perylene-Based Fluorescent Nanoprobe for Acid-Enhanced Detection of Formaldehyde in Lysosome
摘要: Formaldehyde (FA), as a reactive carbonyl species, is extremely hazardous to human health if its concentration is above normal level. In live cells, lysosome is a main organelle to generate endogenous FA. Thus, the design of facile, stable and sensitive probes for the detection of FA in lysosome is essential. Herein, a self-assembled fluorescent nanoprobe based on homoallylamino substituted perylene (P-FA) has been developed for FA detection in lysosome. P-FA can react with FA along with emission color change from blue to green. P-FA exhibited high sensitivity and selectivity to FA in DMSO solution. In aqueous solution, P-FA self-assembled into uniform sphere-like nanoparticle as a fluorescent nanoprobe. Furthermore, the reaction between the nanoprobe and FA was greatly facilitated at pH 4-5, leading to a lower detection limit (0.96 μM at pH 5) than that in DMSO. In live cells, P-FA nanoprobe achieved long-term tracking of lysosome (over 12 h). The fluorescent nanoprobe was then used for both exogenous and endogenous FA detection. Our work provides a facile and effective strategy for the detection of FA in lysosome.
关键词: Weak Acidity,Perylene,Formaldehyde Detection,Lysosome,Fluorescent Nanoprobe
更新于2025-09-04 15:30:14