- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Influence of RbF post deposition treatment on heterojunction and grain boundaries in high efficient (21.1%) Cu(In,Ga)Se2 solar cells
摘要: Post deposition treatments (PDT) by alkali fluorides applied to chalcopyrite-based absorbers have produced record efficiencies in thin-film solar devices in the past few years and recently the efficiency of 22.6 % was achieved with Cu(In,Ga)Se2 (CIGS) using rubidium fluoride (RbF) PDT. However, the effects of RbF-PDT towards changes in its interfacial and grain boundary (GB) properties are still not fully understood. In this work, cells with efficiency higher than 21% are investigated by combination of atom probe tomography (APT) and transmission electron microscopy (TEM) to show how changes in GB and interface chemistry may facilitate high efficiencies. APT studies, carried out at the interface between CIGS absorber and solution-grown CdS buffer layer, show In enrichment and Cu depletion along with traces of Rb. Our APT studies reveal higher amounts of Rb (1.5 at. %) and lower amounts of Na and K (<0.5 at. %) at GBs as compared with previous studies (on non-PDT samples) thus indicating substitution of Na and K by Rb. However, concentration of all alkali elements inside the grain bulk is below detection limit of APT. The concentration of Rb at the GBs in CIGS is measured depth-dependent using both APT and TEM, which consistently shows the increase in Rb towards the Mo back contact. In addition, a pronounced Cu depletion is observed at the GBs which might enhance hole-barrier properties of the GBs, thus improving charge carrier collection and hence the overall efficiency of the device. Thus, understanding effects of RbF-PDT at the atomic scale provides new insights concerning the further improvement of CIGS absorber and interfaces.
关键词: Cu(In,Ga)Se2,Thin-film solar cell,heterojunction,atom probe tomography,post deposition treatments,transmission electron microscopy
更新于2025-11-21 11:20:48
-
Picosecond laser ablation and depth profile of Cu(In, Ga)Se2 thin film layer
摘要: Laser ablation based on picosecond laser was used to achieve the micro-analysis of Cu(In, Ga)Se2 (CIGS) thin film with the ablation crater diameter of 50 μm and the ablation crater central depth of 93 ± 13 nm. We achieved the depth profile of CIGS thin film with different laser shot number. The evolutions of spectral lines intensities of Ca from glass substrate and Ga and In from CIGS thin film layer, and intensity ratios of Ca/Ga and Ca/In could exhibit the change of the ablation volume, which could estimate the thin film thickness of single CIGS thin film layer. The average plasma temperature was calculated to be about 5243 ± 100 K, and the average electron density was calculated to be about 4.5×1016 cm?3. It is shown that our experimental setup is suitable to achieve a precise control and monitor the element compositions in each CIGS thin film layer in the research and in the production of CIGS solar cells.
关键词: Ablation morphology,Electron density,Cu(In, Ga)Se2 thin film,Picosecond laser induced breakdown spectroscopy,Plasma temperature
更新于2025-09-16 10:30:52