修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Preparation of visible-light-responsive photocatalyst by dehydronitrization of gallium oxide hydroxide for hydrogen evolution from water

    摘要: We have performed dehydronitrization of GaOOH under NH3 flow to produce nitrogen doped Ga2O3 and examined their photocatalytic activities for H2 evolution from an aqueous methanol solution under visible light irradiation. GaOOH was synthesized by hydrothermal treatment and dehydronitrided at a temperature ranging from 773 K to 1273 K under NH3 flow. At first, GaOOH was dehydrided to Ga2O3 under 873 K and followed nitrization. With increasing dehydronitrization temperature, the products were getting closer to full nitride (GaN). Among all dehydronitrided samples, only one sample sintered at 1173 K showed photocatalytic activity under visible light irradiation and its crystalline structure had not changed before and after the reactions, while other samples did not show the activity and were oxidized to GaOOH. From thermodynamical aspect, if nitrogen dissolved into oxide or making oxynitride, its chemical potential must be lower than that of N in GaN. Therefore, there should be some gallium oxinitride phase like GaNyO3-x stable in water showing photocatalytic activity.

    关键词: GaOOH,Photocatalyst,Water splitting,Dehydronitrization,GaN

    更新于2025-11-19 16:51:07

  • Gas sensing performance of GaOOH and β-Ga<sub>2</sub>O<sub>3</sub> synthesized by Hydrothermal method: A comparison

    摘要: Gallium Oxy Hydrate (GaOOH) and β-Ga2O3 nanostructures in submicron scale have been synthesized at low temperature by surfactant-free hydro-thermal method. First, GaOOH has been synthesized using Gallium nitrate anhydrate, Ammonium hydroxide as precursors and double distilled water as solvent. As obtained GaOOH powders have been characterized by XRD, FE–SEM, UV–VIS, Thermo Gravimetric Analysis, I-V characteristics and BET surface analysis in order to reveal their structural, morphological, optical, thermal, electrical and surface properties. FE-SEM micrographs confirm the rod like and needle like morphologies of GaOOH and β- Ga2O3 samples, respectively. Porous nature of the samples observed through BET and BJH analyses. Synthesized GaOOH and β-Ga2O3 powders have been subjected to room temperature CO2 gas sensing in the range, 2000 ppm – 10000 ppm. GaOOH showed quick response of 80 s and fast recovery of 129 s at 8000 ppm while β-Ga2O3 showed quick response of 52 s at 8000 ppm and faster recovery of 98 s at 4000 ppm. Also, the repeatability studies were done for GaOOH and β-Ga2O3 films by exposing to different CO2 concentrations for a period of 6 consecutive days. β-Ga2O3 showed enhanced CO2 sensing response than that of GaOOH due to its better structural, electrical, morphological and surface properties.

    关键词: Gallium Oxide (Ga2O3),Gallium Oxide Hydroxide (GaOOH),Hydrothermal method,Characterization,Room temperature CO2 sensing

    更新于2025-09-23 15:21:21